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ABSTRACT

Garnet is widely thought to increase in stability and volume during prograde metamor-
phism and partial melting. Yet, whether early-formed subsolidus garnet persists or breaks
down when melting begins remains an open question. Here, we integrate 3-D X-ray tomog-
raphy with high-resolution major- and trace-element mapping of centrally sectioned garnets
across a metapelitic metamorphic sequence to track their response from the subsolidus-su-
prasolidus transition to melting temperatures up to ~770 °C. Contrary to experimental and
phase equilibrium predictions, garnet undergoes extensive dissolution at the onset of partial
melting, losing >40% of its volume. Melt percolation creates internal cavity networks within
garnet, connecting crystal interiors to the reactive matrix, markedly shortening intracrystal-
line diffusion pathways at the melt-crystal interface. This process leads to the consumption
of garnet and results in major- and trace-element redistribution at temperatures too low for
intracrystalline diffusion in larger grains. Our findings reconcile the long-standing discrep-
ancy between predicted progressive garnet growth above the solidus and the scarcity of melt
inclusions in garnet rims in migmatites and granulites. As partial melting begins, subsolidus
garnet reacts and becomes a permeable heavy rare earth elements and yttrium (HREE-Y)

reservoir in the residual crust.

INTRODUCTION

Garnet is a cornerstone mineral for interpret-
ing deep crustal processes and exerts a first-order
control on the availability of heavy rare earth
elements and yttrium (HREE-Y) during partial
melting. This hinges on the key assumption,
derived from melting experiments and phase
equilibrium models, that garnet remains inert or
may even increase in abundance above the soli-
dus (Patifio Douce and Johnston, 1991; Patifio
Douce and Harris, 1998; Vielzeuf and Schmidt,
2001; Baxter et al., 2017). In metasedimentary
rocks, fluid-absent muscovite dehydration melt-
ing initiates at ~650-750 °C via the reaction
muscovite + plagioclase + quartz = alumino-
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silicate + K-feldspar + melt, producing peralu-
minous melts without involving garnet. Melting
progresses via incongruent biotite breakdown at
~750-850 °C via the reaction biotite + alumi-
nosilicate 4 plagioclase + quartz = garnet +
K-feldspar + melt, generating metaluminous
melts with garnet and K-feldspar as peritectic
phases, thereby reinforcing the paradigm that
garnet abundance and stability progressively
increase above the solidus.

Nevertheless, the natural rock record sug-
gests a more complicated story. Garnet-hosted
melt inclusions occur mainly in the cores of peri-
tectic garnets, implying that pre-existing sub-
solidus crystals were recrystallized or lost before
new growth (e.g., Carvalho et al., 2025). Garnet
instability during high-grade metamorphism has
been invoked to explain Lu-Hf isotopic disequi-
librium signatures in granulites (Moreira et al.,
2023) and mismatches between residual rocks
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and their extracted melts (e.g., Xia et al., 2022;
Yang et al., 2022). At the grain scale, HREE-
Y signatures in granulite-facies garnets reflect
late peritectic regrowth or interface-coupled dis-
solution-precipitation replacement (Ague and
Axler, 2016; Rubatto et al., 2020; Goncalves
et al., 2021; Smit et al., 2024).

Our approach builds on two fundamental
principles applied to a progressive metamor-
phic sequence from the Sergipano belt, north-
eastern Brazil. Firstly, because higher-grade
rocks have passed through similar pressure-
temperature (P-T) conditions as their low-grade
equivalents, the sequence provides a natural
framework for tracing the evolution of subsoli-
dus garnets during partial melting. Secondly,
the largest garnet porphyroblasts typically
nucleate earlier and thus retain the most com-
plete petrological record (George and Gaid-
ies, 2017). Based on these ideas, we integrate
3-D garnet distributions with high-resolution
chemical mapping of the largest, centrally sec-
tioned garnet crystals across the sequence to
evaluate how subsolidus garnet responds to
early crustal melting.

GEOLOGICAL SETTINGS AND
SAMPLING STRATEGY

The Sergipano belt in northeastern Brazil
provides an exceptional natural laboratory to
investigate garnet behavior across the solidus.
Its eastern segment exposes a metamorphic
sequence formed during the late Neoprotero-
zoic collision between the Sdo Francisco craton
and the Pernambuco-Alagoas block (Oliveira
et al., 2010). Six metamorphic zones defined
by index mineral assemblages in metapelites
were mapped: biotite, garnet, staurolite-kya-
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Figure 1. Simplified metamorphic map and cross section of eastern Sergipano belt in north-
eastern Brazil showing distribution of metamorphic zones, isograds, main ductile structures,
and plutons. Dots in map represent location of studied samples. Lower-left panel depicts
distribution of Zr-in-rutile temperatures across the sequence. Bt—biotite; Grt—garnet; St—

staurolite; Ky—kyanite; Kfs—K-feldspar; Sil—sillimanite.

nite, kyanite, K-feldspar—kyanite, and K-feld-
spar—sillimanite (Fig. 1). The first appearance
of K-feldspar prior to sillimanite marks the
initiation of muscovite-dehydration melting
and characterizes the high-pressure mineral
assemblage sequence (Pattison and Forshaw,
2025). Zr-in-rutile content increases across the
sequence, yielding maximum temperatures of
~770 °C (Fig. 1).

To track garnet evolution, we selected
compositionally comparable garnet-bearing
metapelites from each zone. Cylindrical cores

were drilled from hand samples and scanned
using microcomputed tomography (uCT), pro-
viding high-resolution 3-D images of garnet
distributions. In each sample, the largest garnet
crystal was selected and cut through its equa-
torial section. The resulting rock slices were
mounted and polished to expose the geomet-
ric center of the crystals for analysis. High-
resolution elemental maps were acquired using
electron probe microanalysis (EPMA) and laser
ablation—inductively coupled plasma—mass
spectrometry (LA-ICP-MS). Further analytical

details, sample locations, and geochemistry are
provided in the Supplemental Material'.

TRACKING GARNET DISTRIBUTION
ACROSS THE SOLIDUS

Petrographic observations reveal systematic
changes in garnet texture and inclusion assem-
blages across the solidus. Subsolidus garnets
(garnet to kyanite zones) exhibit sharp grain
boundaries and host inclusions of prograde min-
erals such as quartz, muscovite, biotite, stau-
rolite, ilmenite, and rutile (Figs. 2A-2C). In
contrast, suprasolidus garnets (K-feldspar—kya-
nite and K-feldspar—sillimanite zones) display
deeply embayed boundaries and host polycrys-
talline quartzofeldspathic domains (Figs. 2D and
2E) interpreted as former melt pockets. Rather
than being isolated, these pockets form 3-D,
channel-like networks connecting the crystal
interior to the external matrix (Movie S1 in the
Supplemental Material).

This textural shift coincides with a pro-
nounced reduction in garnet modal abundance,
from 5.3 +0.2,6.3 £ 0.1, and 5.4 £ 0.1 vol%
in three subsolidus samples to 3.5 4= 0.2 and
1.2 £ 0.4 vol% in the two suprasolidus sam-
ples (Fig. 2F), representing a net loss of ~42%
across the solidus. The number of crystals also
declines markedly, from hundreds in subsoli-
dus samples to 117 and 81 in comparably sized
suprasolidus samples, ruling out simple volu-
metric dilution (Table S2 in the Supplemen-
tal Material). Crystal size distribution (CSD)
analysis reinforces this trend (Fig. 2G). Sam-
ples from the garnet and staurolite-kyanite
zones show right-skewed CSDs with long tails
of large crystals, consistent with protracted
growth and nucleation during prograde meta-
morphism (George and Gaidies, 2017). The
kyanite zone sample exhibits a flatter CSD,
potentially reflecting grain-size maturation
during staurolite breakdown (Chinner, 1961),
longer heating time scales, or kinetic suppres-
sion of renewed nucleation (Kretz, 1966; Kelly
et al., 2013). Suprasolidus CSDs are similarly
flat, comparable to that of the kyanite zone
sample, and exhibit maximum crystal radii of
up to 0.20 mm.

Phase equilibrium simulations of garnet
growth along the metamorphic field gradient
indicate a limited influence of bulk-rock vari-
ability on the garnet volume (Fig. 2H). Models
predict the observed subsolidus garnet volume
but overestimate the suprasolidus volume by
>10%, suggesting a minimal effect of bulk-rock
composition on garnet volume loss. Additional

'Supplemental Material. Detailed methods
and extended results, including Figures S1-S7,
Supplemental Tables S1-S4, and Movie S1. Please
visit https://doi.org/10.1130/GEOL.S.30811355 to
access the supplemental material; contact editing@
geosociety.org with any questions.
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Figure 2. (A-E) Petrographic features of representative garnet grains from garnet (A), staurolite-kyanite (B), kyanite (C), K-feldspar—kyanite
(D), and K-feldspar-sillimanite (E) zones. (F) X-ray microcomputed tomography (uCT) reconstructions depicting garnet reduction across the
solidus; reconstructions are plotted in scale, and garnet crystals are colored according to individual equivalent spherical diameter (ESD). Total
volume of garnet, along with its respective uncertainty, is shown below each sample. Purple squares in largest garnet crystals indicate approxi-
mate position where central sections were obtained. (G) Kernel density curves of crystal size distributions showing shift of garnet population
distributions with increasing metamorphic grade. (H) Phase equilibrium modeling of prograde garnet growth using whole-rock compositions.
The fractional crystallization model (FCM) was applied to subsolidus conditions, and the equilibrium crystallization model (ECM) was used to
simulate suprasolidus garnet growth (e.g., Lanari and Engi, 2017). The model systematically overestimates the volume of suprasolidus garnet
(A = difference in vol%), suggesting the loss of garnet above the solidus cannot be explained by bulk-rock effects alone. Ap—apatite; Bt—biotite;
Grt—garnet; im—ilmenite; Kfs—K-feldspar; Ky—kyanite; Ms—muscovite; Pl—plagioclase; Qz—quartz; Rt—rutile; Sil—sillimanite; St—staurolite.

pCT scans from multiple hand specimens across
different outcrops consistently reproduced gar-
net distributions and CSD shifts (Supplemental
Material), which suggests that partial melting
caused the loss of garnet volume.

ELEMENT (RE)DISTRIBUTION IN
METAMORPHIC GARNETS

Garnet is the primary reservoir for HREE-
Y in high-grade metamorphic rocks, but the
integrity of its geochemical record above the

Geological Society of America | GEOLOGY | Volume XX | Number XX | www.gsapubs.org

solidus is uncertain. In subsolidus samples, gar-
net preserves prograde growth zoning consis-
tent with Rayleigh fractionation for major ele-
ments (Figs. 3A-3C); however, trace elements
reveal a more complex history. The garnet zone
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Garnet

Staurolite-Kyanite

sample exhibits two HREE-Y—enriched cores
surrounded by an annulus, suggesting coales-
cence of multiple nuclei (Spiess et al., 2001).
Staurolite-kyanite zone garnet shows concentric
oscillatory HREE-Y zoning, indicating fluctu-
ating trace element supply from matrix mineral
reactions (Konrad-Schmolke et al., 2008). Kya-
nite zone garnet displays bell-shaped HREE-Y
and Mn zoning, characteristic of near-equilib-
rium growth from a homogenized matrix (Yogi
et al., 2025).

Suprasolidus garnets, in contrast, exhibit
clear evidence of prograde HREE-Y zoning
overprint and smoothing by melt-mediated pro-
cesses. In the K-feldspar—kyanite zone, garnet
preserves a concentric HREE-Y spike, inter-
preted as the remnant subsolidus core (Fig. 3D).

K-feldspar—Kyanite  K-feldspar-Sillimanite

Poyr

This is surrounded by a broad depleted mantle,
an enriched annulus, and a final depleted outer-
most rim. Crystallized melt pockets connected
to the external matrix occur mainly outside the
limit of the high-Ca core, marking the extent
of melt percolation (green polygon in Fig. 3D).
These features are inconsistent with any frac-
tional crystallization or intracrystalline-diffu-
sion mechanism alone. Instead, we attribute
them to melt-assisted dissolution, which creates
interconnected porosity that drastically shortens
diffusion pathways along the crystal-melt inter-
face (e.g., Dominguez et al., 2025). This facili-
tates the rapid outward flux of elements from the
dissolving crystal, generating the depleted man-
tle. Afterward, back-diffusion (Carlson, 2012)
or interface-coupled dissolution-precipitation

Figure 3. Selected major-
and trace-element maps
of centrally sectioned
garnets from subsolidus
(A-C) to suprasolidus
(D-E) samples, all using
consistent color and size
scales for comparison.
The calculated end-mem-
ber maps of spessartine
(Xsps) and grossular (X,,)
show major-element
zoning. Vanadium (V),
yttrium (Y), dysprosium
(Dy), and lutetium (Lu)
are displayed on a loga-
rithmic scale. In D, green
polygon marks area least
affected by melt infiltra-
tion, while gray arrows
indicate melt-related dis-
solution features. Maps
were calibrated with
XMapTools (Lanari et al.,
2014; Markmann et al.,
2024). Mineral abbre-
viations: Ap—apatite;
Bt—biotite; Chl—chlorite;
IiIm—ilmenite; Kfs—K-
feldspar; Ky—kyanite;
Ms—muscovite; Pl—pla-
gioclase; Qz—quartz;
Rt—rutile; St—staurolite.

(Putnis, 2009; Ague and Axler, 2016; Goncalves
et al., 2021) concentrates these liberated ele-
ments into the secondary HREE-Y-rich outer
annulus (Fig. 3D). Furthermore, complete dis-
solution of smaller crystals may also contribute
to this enrichment. Co-enrichments of V, Cr, and
Zr at the outer annulus suggest contributions
from concurrent muscovite and zircon consump-
tion during garnet dissolution. The outermost
Zr-depleted rim likely represents final garnet
overgrowth from a melt that became under-
saturated in HREE-Y due to dilution effects
or to concurrent prograde zircon overgrowth
(Yakymchuk, 2023).

In the highest-grade K-feldspar—sillimanite
zone, evidence for dissolution and enhanced dif-
fusion is more advanced. The original Mn-rich
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interconnected cavity network linking crystal interiors to the external matrix and enhances re-equilibration via diffusion. As partial melting
intensifies, early-formed, HREE-Y-enriched cores are progressively consumed (indicated by the dashed outline and question mark), leaving
behind highly modified secondary zoning. Melt extracted near the solidus may carry elevated HREE-Y contents or inherit lutetium/hafnium
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core is completely absent, Ca zoning is restricted
to a small relict domain, and HREE-Y zoning
is reduced to a blurred, curved annulus asso-
ciated with former melt pockets connected to
the matrix (Fig. 3E; Movie S1). This annulus is
compositionally and geometrically analogous to
the outer annulus observed in the K-feldspar—
kyanite zone (Fig. 3D), suggesting an advanced
stage of dissolution and loss of the prograde
subsolidus core. These findings highlight the
efficiency of dissolution as the partial melting
intensifies to temperatures of ~770 °C.

GARNET DISSOLUTION EFFECTS
ON HREE-Y RETENTION IN THE
PARTIALLY MELTED CRUST

Garnet’s combination of broad P-T-compo-
sition stability above the solidus coupled with
its ability to retain slow-diffusing elements
underpins its importance to petrochronology
(Baxter et al., 2017). Our results show, how-
ever, that there is a suprasolidus window of
~100 °C in which prograde garnet undergoes
extensive melt-assisted dissolution. This adds
an additional layer of complexity to petrochro-
nological interpretations: within this interval,
melt infiltrates prograde garnet and remobi-
lizes slow-diffusing elements such as Lu and
YD at temperatures far below their conventional
closure temperature for large grains (Carlson,
2012; Bloch et al., 2020). Therefore, many
zoned granulite-facies garnets may represent
extensively modified subsolidus remnants or

renewed peritectic growth rather than pristine
prograde signatures (e.g., Carvalho et al., 2025).
Prograde zoning in migmatitic garnets should
therefore be interpreted with caution, particu-
larly when performing thermobarometry. This
process also explains why melt inclusions are
commonly found in garnet cores rather than in
rim overgrowths (Bartoli et al., 2016; Carvalho
et al., 2025): subsolidus garnet is removed as
partial melting begins, followed by a renewed
peritectic nucleation, trapping melt droplets as
the garnet volume increases again.

These insights are synthesized in a concep-
tual model illustrating garnet evolution during
progressive metamorphism (Fig. 4). Garnet
sequesters HREE-Y during prograde growth but
releases part of this budget upon melt-assisted
dissolution. While prograde zircon growth may
locally retain this flux (Yakymchuk, 2023),
continued melt loss means that a portion of
the HREE-Y budget is inevitably lost. This has
implications for models that interpret high St/Y
or La/Yb ratios as indicative of high-P melting
in the garnet-stability field (Chiaradia, 2015;
Profeta et al., 2015; Kendrick and Yakymchuk,
2020). Our results suggest that crustal granites
may inherit a HREE-Y load from dissolving
subsolidus garnet, potentially leading to under-
estimates of melting depth. Future mass-balance
studies are necessary to quantify competition
between melt loss and the buffering capacity of
zircon and peritectic garnet in retaining HREE-
Y in the source. A key outstanding question is
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whether similar prograde garnet dissolution
occurs during partial melting of other protoliths.

Our findings also have implications for the
Lu-Hf isotopic budget of continental reservoirs.
Remobilization of Lu from subsolidus garnet
into extracted melts can shift Lu/Hf ratios to
more radiogenic values, particularly if garnet
had accumulated significant radiogenic '"Hf
prior to dissolution. Although this mechanism
has recently been proposed (Gao et al., 2022;
Xiaetal., 2022; Yang et al., 2022; Moreira et al.,
2023), it remains untested. Our study provides
new evidence that dissolution of prograde garnet
may contribute to the eHf variability commonly
observed in crust-derived magmas.

Overall, our results show that garnet cannot
be treated as an inert phase during muscovite-
dehydration melting of metapelites. Garnet
dissolution during early suprasolidus condi-
tions can redistribute trace elements and mod-
ify Lu/Hf ratios in crustal magmas, requiring
a reassessment of how garnet is incorporated
into models of crustal differentiation and melt
evolution.
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