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ABSTRACT
Geothermobarometry provides crucial constraints on the physical conditions of metamorphism, offering insights into petroge-
netic processes and providing key information on thermal regimes and metamorphic depths to other geological disciplines. 
However, calibrating a thermobarometer from the natural record is challenging because independent pressure (P) and temper-
ature (T) estimates are required, and the compositional variation of minerals—governed by multiple metamorphic reactions—
must be captured in a complex function. This work calibrates a machine learning thermobarometer for biotite using relative P–T 
estimates based on mineral assemblage sequences. A neural network is used as a flexible model to fit a high-dimensional thermo-
barometric regression curve. To address the challenge of sparse training data, a transfer learning strategy is employed, where the 
model is primarily trained on a large dataset generated with phase equilibrium modelling before refinement with natural data. 
A general framework for calibrating machine learning thermobarometers is outlined using a neural network thermobarometer 
for biotite as an example. Selection of the best-performing model is guided by k-fold cross-validation alongside complementary 
accuracy checks using metamorphic sequences and precision assessments via Monte Carlo error propagation. Evaluation on an 
independent test dataset, compiled from the literature, indicates that the model is a potential biotite single-crystal thermometer 
with a root mean square error of ± 45°C, consistent with the estimated uncertainty of Ti-in-Bt thermometry applied to the same 
data. A potential barometer is affected by systematic underestimation of pressures above 0.6 GPa due to regression to the mean 
of the natural database, which is biased towards low-pressure metamorphism. This limits its applicability in higher-pressure re-
gimes. This study highlights the potential of using neural networks with transfer learning in petrological applications since they 
are often constrained by limited natural data.

1   |   Introduction

Geothermobarometry, the determination of the pressure (P) 
and temperature (T) conditions of metamorphism, is a fun-
damental petrological problem. These conditions provide a 
reference for the depth and temperature regime that operated 

during the metamorphism of a rock unit and therefore provide 
important constraints on the geodynamic setting (Ernst 1971; 
Thompson and England  1984), mountain-building processes 
(Kohn  2008), the modelling of geo-mechanical processes 
(Hertgen et al. 2017) and cycling of elements (Hermann and 
Lakey 2021; Yardley and Cleverley 2013). The P–T conditions 
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of metamorphism in the Earth's crust and mantle can never be 
probed directly. Instead, they must be determined indirectly 
using geothermobarometry, which involves inverting from the 
mineral assemblage and mineral compositions to recover P–T 
conditions from frozen equilibria (Fyfe et  al.  1958). Various 
approaches to quantitative geothermobarometry have been de-
veloped (see detailed reviews by Lanari and Duesterhoeft 2019; 
Powell and Holland 2008; Spear et al. 2016). For this work, the 
techniques relying on (semi-)empirical calibration of thermo-
barometers are relevant and considered below. Experimental 
calibrations of exchange (e.g., Ellis and Green  1979; Ferry 
and Spear  1978) and net-transfer reactions (e.g., Koziol and 
Newton 1988; Liu and Bohlen 1995) can provide thermobaro-
metric relations in simplified systems. For minor or trace el-
ements, their P–T-dependent saturation in minerals can be 
calibrated as geothermobarometer if their incorporation is 
buffered by accessory phases stable over a broad P–T range, 
for example, the incorporation of Ti into various phases (Ferry 
and Watson  2007; Henry et  al.  2005; Osborne et  al.  2022). 
High-T batch equilibration experiments can directly provide 
high-dimensional phase compositions for multiple P–T points 
and have successfully been used in magmatic petrology to 
calibrate geothermobarometers. The experiments presumably 
capture the complexity of natural geochemical equilibration 
through multiple reactions (Jorgenson et  al.  2022; Li and 
Zhang 2022; Weber and Blundy 2024).

A regression to calibrate a geothermobarometer can either be 
done by fitting a purely empirical thermo-, baro- or thermo-
barometric function (e.g., Cathelineau and Nieva 1985; Chicchi 
et al. 2023; Henry et al. 2005; Jorgenson et al. 2022; Weber and 
Blundy 2024) or a physically based expression, often a formula-
tion of the Gibbs free energy difference of a reaction (ΔG), where 
either P, T or both are variables (e.g., Ellis and Green 1979; Ferry 
and Spear 1978; Lanari et al. 2014). Studies using linear least-
square-fitting for the calibration (Ferry and Spear 1978; Ferry 
and Watson  2007) rely on reformulating a suitable thermoba-
rometer as a linear expression, hence limiting the complexity 
of the model. Some studies have used higher-order functions, 
that can be fitted by using numerical optimisation, to expand 
the complexity of calibrated expressions (Henry et  al.  2005; 
Osborne et al. 2022). In recent years, petrology has seen an in-
crease in the successful application of modern machine learning 
algorithms, which no longer require an a priori choice of expres-
sion, and therefore provide an additional increase in flexibility 
to directly fit potentially complex and undiscovered thermo-
barometric relations in the data (Jorgenson et al. 2022; Li and 
Zhang 2022; Weber and Blundy 2024). The reader is referred to 
Petrelli  (2024) for a compilation of recent advances in the ap-
plication of machine learning algorithms to thermobarometric 
regression problems.

To fit a thermobarometer, an estimate of P–T, independent of the 
composition (X), is required for each data point. For experimen-
tal data, the laboratory-measured P–T conditions can be used di-
rectly (e.g., Chicchi et al. 2023; Ferry and Spear 1978; Jorgenson 
et al. 2022; Weber and Blundy 2024) while considering the degree 
to which equilibrium was achieved (Pattison 1994). For natural 
samples, there is no precise numeric P–T readily available. Two 
different strategies have been used to overcome this limitation 
in the calibration of thermobarometers from natural data. One 

approach is to use an existing thermobarometer to estimate the 
P–T conditions of each analysis, and then use these in the cali-
bration of the new thermobarometer; for example, the Graham 
and Powell (1984) calibration of the Grt-Hbl thermometer which 
used the Grt-Cpx thermometer of Ellis and Green (1979) or the 
Wu and Chen (2015) calibration of the Ti-in-Biotite thermome-
ter which used the Grt-Bt thermometer and Grt-Al2SiO5-Qz-Pl 
barometer of Holdaway (2000, 2001). A different strategy relies 
on metamorphic field gradients that, if anchored in P–T, can 
provide constraints for points within an observable sequence. 
Henry et al.  (2005), following Henry and Guidotti  (2002), tied 
the P–T conditions of metapelitic isograds in the Grt-St-Sil-Kfs 
sequence in west-central Maine to the petrogenetic grid of Spear 
and Cheney  (1989). This grid is based on the thermodynamic 
data of Berman and Brown (1985) and Berman (1988). Assuming 
these isograds correspond to isotherms, they interpolated the 
temperature in between, obtaining precise constraints for each 
sample. Mineral abbreviations are after Warr (2021).

A metamorphic mineral well-suited for the calibration of a geo-
thermobarometer is biotite. Biotite is a ubiquitous mineral in 
metasiliciclastic rocks, which are globally abundant throughout 
the Earth's history (Ronov 1972), and is stable from greenschist 
to granulite facies conditions (Spear 1993). In metapelites, the 
Fe–Mg exchange between biotite and garnet systematically in-
creases KD Mg–Fe with increasing T (Hietanen 1969; Lyons and 
Morse 1970; Saxena 1969; Sen and Chakraborty 1968). In addi-
tion, Ti saturation in biotite has also been shown to increase with 
increasing T of metamorphism (Guidotti et al. 1977; Kwak 1968). 
Building on these observations, Henry and Guidotti (2002), and 
later Henry et al. (2005), calibrated an empirical Ti-in-Bt ther-
mometer. Experimental studies performed at high P conditions 
(> 2.0 GPa) suggest a Tschermak-type Si–Al substitution in bi-
otite as a function of pressure (Hermann 2003). While there is 
experimental data for high-temperature biotite (> 625°C, Li and 
Zhang  2022), sluggish experimental kinetics at low tempera-
tures prevent the acquisition of such data at greenschist to am-
phibolite facies conditions.

To address the limitations outlined above, this study investigates 
the process of training a neural network (NN) for coupled bio-
tite thermobarometry using natural mineral compositions from 
metapelitic sequences compiled by Pattison and Forshaw (2025). 
A systematic approach to the calibration, validation and per-
formance evaluation of a machine learning thermobarometer 
is presented and used for the calibration of a NN biotite ther-
mobarometer. The strategy and specific performance evalua-
tions outlined below offer a reproducible framework to fit any 
machine-learning-based thermobarometers, applicable to fu-
ture studies using different ML algorithms and calibrating ther-
mobarometers for minerals other than biotite.

Calibrating any thermobarometer based on natural data is 
challenging since first suitable analyses in metamorphic 
petrology are often sparse and second, compared to experi-
ments, an additional independent constraint for P–T is re-
quired. In this work, P–T conditions are estimated based on 
the relational information of mineral assemblage sequences 
(see Carmichael  1978; Hietanen  1967; Miyashiro  1961; 
Pattison and Forshaw  2025; Pattison and Tracy  1991). This 
approach was successful for a single metamorphic sequence, 
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as demonstrated by Henry and Guidotti  (2002) and Henry 
et al. (2005) in the calibration of their Ti-in-Bt thermometer. 
To address the challenge of limited data availability, phase 
equilibrium modelling was used to generate large datasets of 
synthetic biotite-bearing metapelites. The use of NNs as a ma-
chine learning model allows leveraging of a technique called 
transfer-learning (see Weiss et  al.  2016 for a review), where 
a functional relation in sparse data is fitted, building upon a 
prior model obtained from a larger dataset. This study demon-
strates the potential of transfer learning using phase equilib-
rium modelling to fit machine learning models to sparsely 
available petrological data, both collections of natural data 
and experimental data points.

2   |   Methods

2.1   |   Dataset of Natural Pelitic Biotite 
Compositions

Fitting an empirical thermobarometer on natural biotite 
compositions from metapelites requires a large database of 
constraints, consisting of pressure–temperature–biotite compo-
sition (P–T–Xbiotite) points. This study uses a database of biotite 
compositions from metapelitic mineral assemblage sequences 
(MAS), derived from the global compilation of the natural 
metapelite record by Pattison and Forshaw  (2025). The data 
cover a significant part of the domain of typical crustal met-
amorphic conditions spanning approximately 400°C to 850°C, 
and 0.15 GPa to 0.95 GPa (Figure 1a). The biotite dataset shows 
variation in the major elements which is thought to capture 
potential P–T-dependent substitutions (Figure  1b,c). Volatile 
elements, including H, F and Cl, were excluded either due to 
analytical limitations and because they are not routinely mea-
sured by electron microprobe. Biotite stoichiometry is therefore 
calculated based on 11-anionic charges with a constant H2O of 
1.0 per formula unit.

A further limitation is that biotite contains both ferrous (Fe2+) and 
ferric (Fe3+) iron, yet the electron microprobe cannot differenti-
ate between these oxidation states. To assess if considering Fe2+ 
and Fe3+ separately would have a large effect on the calibration of 
a biotite thermobarometer, this was tested during initial feature 
selection by using a rough estimate of XFe3+ = Fe3+/(Fe2++Fe3+) 
in biotite, obtained based on the Fe-oxide present in the sta-
ble assemblage (Forshaw and Pattison  2021; Guidotti and 
Dyar 1991). In trioctahedral micas, the Ca content is typically 
negligible, and the Ca-rich clintonite does not form a solid solu-
tion with biotite (Tischendorf et al. 2018). Consequently, CaO is 
not considered in the compositional data of biotite used in the 
training dataset. In contrast to white mica, the Na content in 
metamorphic biotite is typically low, and the interlayer is domi-
nated by K (Dubacq and Forshaw 2024). To check for a potential 
P–T dependence of the Na–K substitution in the interlayer site, 
a second set in the MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–
TiO2 (MnNKFMAST) system was assessed, in addition to the 
MnO–FeO–MgO–Al2O3–SiO2–TiO2 (MnFMAST) system that 
assumes K is fixed at 1.0 per formula unit.

The metamorphic zones within each MAS provide a rela-
tive framework for obtaining an independent estimate of P–T 
(Figure  1a). Zones of characteristic assemblages in metamor-
phic field gradients are the result of increasing temperature, 
while the sequence of mineral assemblages varies systemati-
cally with changing pressure (see Pattison and Forshaw 2025, 
and references therein). The supplementary data of Pattison 
and Forshaw  (2025) outlines the estimated P–T ranges of the 
zones within each MAS. Each analysis of biotite composition 
was then assigned a unique P–T by random sampling within 
the given P–T zones. Pressures were sampled from a uniform 
probability distribution within each zone. This results in an 
uncertainty of ± 0.1 GPa in the data's P estimate. Temperatures 
were sampled from a uniform probability distribution across a 
metamorphic zone and then assigned to each sample by order-
ing them according to the temperature predicted by the Ti-in-Bt 

FIGURE 1    |    Dataset of P–T–Xbiotite based on the database of Pattison and Forshaw (2025). (a) Number of biotite analyses in the metamorphic zones 
of mineral assemblage sequences plotted in P–T space; see Supplementary Material S4 for the inferred P–T of the zones. (b) Compositional variance of 
biotite in XMg and Al:Si. The colour-coding after pressure indicates a rough trend of decreasing Al:Si with increasing pressure. (c) Compositional vari-
ance of biotite in XMg and Ti:Si. The colour-coding after temperature shows a clear trend of increasing Ti with increasing temperature. Compositional 
endmembers of biotite are those proposed by Dubacq and Forshaw (2024).
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thermometer of Henry et al. (2005). This procedure hard-codes 
the well-established correlation between T and Ti in biotite 
(Guidotti et al. 1977; Henry and Guidotti 2002; Kwak 1968) into 
the dataset, artificially increasing the data resolution in T, below 
the ± 50°C to 100°C of the metamorphic zones. By not directly 
taking the prediction of the Ti-in-Bt thermometry but only or-
dering the randomly generated temperatures for each zone after 
these predictions, we aim to minimise the potential bias to-
wards the calibration of Henry et al. (2005). See Supplementary 
Material  S1 for a discussion of the effect of different methods 
to assign a P–T estimate to each analysis on the performance 
of a NN thermobarometer during training. In Supplementary 
Material  S4, a complete record of the P–T ranges used in this 
study is provided. Minor deviations from those given in Pattison 
and Forshaw (2025) are discussed there. A training dataset of 
2148 biotite compositions was extracted for the MnFMAST sys-
tem and 2092 for the MnNKFMAST system. The smaller number 
in the MnNKFMAST dataset results from incomplete analyses 
of Na in biotite, which were filtered out. The exact P–T–Xbiotite 
datasets, based on the database of Pattison and Forshaw (2025), 
are provided alongside the code in an open-source repository to 
ensure reproducibility of the results presented here.

2.2   |   Validation and Test Dataset

When calibrating a machine learning model, data from the 
training dataset can be used in two different ways. The train-
ing subset is used during the numerical optimisation of the 
model parameters, also known as training, to find the best set 
of parameters. A validation subset is used to evaluate the model 
performance during training and adapt well-performing archi-
tectures, feature sets and training strategies. During the calibra-
tion procedure, the model is optimised and, therefore, a priori 
biased towards both the training and validation data. Towards 
the training data the model is biased directly by optimising its 
parameters during training. It is important to emphasise that 
there is also a potential bias towards the validation data by sub-
sequently selecting input features, hyperparameters and train-
ing strategies that perform well on the validation data. To avoid 
this optimisation leading to overfitting, it is crucial to maintain 
a separate independent test dataset throughout the calibration 
process, which is never used in any decision affecting the model 
performance and which allows the performance of a final model 
to be assessed.

During the calibration of the models, randomly selected vali-
dation data from the training dataset are complemented with 
10 additional metamorphic sequences, for which P–T can be es-
timated based on the mineral assemblage zones (Pattison and 
Forshaw 2025). While sequential data does not provide precise 
P–T for each individual sample, it can be used to test if a ther-
mobarometer accurately predicts the increase in metamorphic 
grade across a sequence. Additionally, a set of biotite analyses 
from sample 28HF18 of Yogi et al. (2024) are used to investigate 
the propagation of compositional uncertainty found in nature at 
the thin section scale.

To test the accuracy of the NN-thermobarometer an indepen-
dent test set of samples not used during training and validation 
was compiled. The test dataset comprises 48 biotite-bearing 

samples with published P–T estimates obtained by the com-
bination of multiple methods, preferentially including a com-
bination of phase equilibrium modelling (Bingo-Antidote, 
Duesterhoeft and Lanari 2020; LinaForma, Mackay-Champion 
and Cawood 2024), multi-equilibrium thermobarometry (TWQ, 
Berman  1991; AvPT, Powell and Holland  1994; ChlMicaEqui, 
Lanari  2012), empirical thermobarometry (Ti-in-Bt, Henry 
et  al.  2005; Grt-Bt thermometry, Ferry and Spear  1978, Grt-
Bt-Ms-Pl barometry, Wu  2015; Grt-Bt-Al2SiO5-Qz barometry, 
Wu  2017) and non-conventional thermobaromery (e.g., Ti-in-
quartz thermometry, Ferry and Watson 2007; quartz-in-garnet 
barometry [QuiG], Kohn 2014; Raman spectra of carbonaceous 
material thermometry [RSCM], Beyssac et al. 2002).

2.3   |   Machine Learning Methodology

To fit the thermobarometer, feed-forward NNs were used 
(Figure 2a, Table 1). A NN is a machine learning algorithm that 
is made up of multiple layers, through which input data is con-
secutively processed (see in Petrelli 2024 for a review). The input 
layer takes in the compositional vector of biotite (��⃗C), and the last 
layer consists of a two-dimensional P–T vector as output. In be-
tween sit l hidden layers with each a certain number of neurons 
(k). In each layer, after the input, two mathematical operations 
take place. First, the previous layer's output vector ( �⃗x), of size 
n × 1, is multiplied with a k × n matrix of weights (�) and a k × 1 
bias vector ( �⃗�) is added, resulting in a k × 1 vector ( �⃗y):

This linear transformation is then followed by the non-linear ac-
tivation function, a rectified linear unit (ReLU):

The full NN is a concatenation of l + 1 multi-linear transforma-
tions, each followed by a ReLU. In the last layer, the output, an 
identity function is used as the activation instead of the ReLU. 
During training of the NN, the parameters of all the weight-
matrices and bias vectors are adapted using a numerical op-
timiser to minimise the value of a loss function. This loss is 
calculated as mean squared error (MSE) between the true (Yi) 
and predicted (Ŷ i) for values P and T.

To evaluate the performance of a trained NN thermobarometer 
and estimate the uncertainty of its predictions, the root-mean-
square error (RMSE) is calculated:

As an optimiser the Adam algorithm (Kingma and Ba 2014) was 
used with an inverse-time learning rate decay scheme. The com-
positional input data was normalised, while the P–T data were 
scaled using minimum–maximum scaling in the range [0.15, 
1.0] GPa and [400, 900]°C.

(1)�⃗y =� �⃗x + �⃗�

(2)ReLU
(

yi
)

=

{

yi, yi>0

0, yi≤0

(3)MSE= f
(

�i,…,j, �⃗� u,…,w

)

=
1

n

∑n

i=1

(

Yi− �Y i

)2

(4)RMSE =

√

MSE

 15251314, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

g.70004, W
iley O

nline L
ibrary on [04/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5

FIGURE 2    |    Machine learning methodology of this study. (a) A neural network thermobarometer consisting of an input compositional vector of 
biotite, four hidden layers and a two-dimensional output with the predicted pressure and temperature. Each layer represents a linear followed by 
a ReLU transformation. (b) Hyperparameters and feature sets are refined iteratively in experiments by optimising the performance on a validation 
subset. Afterwards, the best performing models are evaluated using 5-fold cross-validation to select the features, hyperparameter and training strat-
egy for the final model. (c) Transfer learning is a training strategy used on problems with sparse constraints. First, a prior model is fitted on a large 
dataset of a similar domain, for example, data simulated using phase equilibrium modelling. Afterwards, the smaller dataset containing the relation 
to fit is used in transfer learning. This is either done by feature extraction, where the prior's prediction is used as an additional input feature helping 
the regression, or by fine-tuning, where the prior model's parameter is finely updated, assuming they provide an initial parametrisation close to the 
global optimum.

TABLE 1    |    NN models for thermobarometry.

Name Input features
Input 

dimensiona
Model 

architectureb
Trainable 

parameters Regularisation
Transfer 
learning

Number of 
constraintsc

M1 Ti-XMg (2) (16) 65 — No (1718)

M2a MnFMAST (6) (16) 146 — No (1718)

M2b MnFMAST + index 
mineralsd

(14) (64, 64, 64) 9410 Dropout layers No (1718)

M3a MnFMAST (6) (64, 64, 64, 64) 13,058 Dropout layers Yes (ds62) (1718/37763)e

M3b MnFMAST (6) (64, 64, 64, 64) 13,058 Dropout layers Yes 
(ds55Bt07)

(1718/44205)e

M3c MnFMAST (6) (64, 64, 64, 64) 13,058 Dropout layers Yes 
(ds55BtT)

(1718/39473)e

aInput dimension is the number of neurons in the input vector, corresponding to the number of features used in a given model.
bThe model architecture is given in number of neurons in each hidden layer of the neural network.
cThe number of constraints given here are 80% of the training database of P–T-Xbiotite triplets, because during calibration 20% of the data is used for validation.
dIndex minerals considered are: Chl, Grt, Crd, And, St, Ky, Sil and Kfs; mineral abbreviations after Warr (2021).
eFor the transfer learning models both the constrains of the training and pre-training are given (# training/# pre-training).
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2.3.1   |   Hyperparameter Tuning and Feature 
Engineering

In addition to the trainable parameters that are optimised 
during training, other parameters that are set manually be-
fore training can influence a NN's performance. These hy-
perparameters are optimised in a semi-quantitative way 
(Figure 2b). Multiple NNs are trained, varying one hyperpa-
rameter at a time, and then evaluated. For each hyperparam-
eter, the value is chosen so that the NN best performs on 20% 
of the data, which has been randomly selected and held out 
of training as validation data. For the data simulated using 
phase equilibrium modelling, the fraction is reduced to 10% 
as this dataset is much larger. Special emphasis is placed on 
minimising overfitting, identified by discrepancies in perfor-
mance between validation and training data. The following 
hyperparameters were systematically tested (Figure  2b): (i) 
different combinations of the number of layers (l) and neurons 
(k) per layer in the NN; (ii) various initial learning rates for 
the numerical optimiser; and (iii) regularisation methods to 
reduce overfitting. Additional regularisation techniques such 
as larger weight penalties (L2 regularisation), dropout layers, 
normalisation layers, or their combinations can help mitigate 
overfitting while improving overall performance, an alterna-
tive to simply constraining model capacity with a smaller NN 
(Chollet 2021).

Similarly, different features put into the NN can also influence 
its performance in predicting P–T. As with the hyperparameters 
different sets of features are evaluated in a semi-quantitative 
way by comparing the NN performance on a randomly selected 
validation subset (20%) of the training data. A complete list of 
all hyperparameters and feature sets tested can be found in the 
Supplementary Materials S1 and S2.

2.3.2   |   Transfer Learning

Another regularisation methodology to train a NN on sparse 
data and reduce overfitting is transfer learning (Figure  2c). 
For this, a prior NN is first trained on an analogous regres-
sion task with a significantly larger dataset containing sim-
ilar information as the sparse data on which the final task 
should be trained (Weiss et  al.  2016). In this study, phase 
equilibrium modelling was used to generate large datasets 
for training a prior NN (see below). Transfer learning is then 
performed using one of two strategies (Figure 2c). In the fea-
ture extraction strategy, the prior model prediction is used as 
an additional input combined with the biotite composition 
in a successive NN. In this case, only the parameters of the 
added NN layers are trained, while the prior model remains 
unchanged. In the fine-tuning strategy, the prior model is re-
trained on the new dataset. The parameterisation of the prior 
model is used as an initialisation that is assumed to be closer 
to an optimal solution to the regression problem, and the pa-
rameters are then updated with a small learning rate.

Hyperparameters of the prior NNs are optimised analogous to 
the procedure described above. The semi-quantitative tests were 
conducted using the data simulated with ds62 (see below) to sys-
tematically assess the effect of (i) model capacity, the number 

of trainable parameters, with different architectures, (ii) the ef-
fect of different activation functions and (iii) regularisation by 
parameter-regularisation or regularisation layers.

2.3.3   |   Cross-Validation for Model Selection

Initial hyperparameter tuning and exploration of different sets 
of input features resulted in six possible NN thermobarometers 
(see Table 1): a minimal model M1 considering the Ti content 
and XMg = Mg/Mg + FeTot of biotite, a model M2a trained on the 
MnFMAST system, a model M2b trained on the MnFMAST 
dataset with the additional input of a categorical variable denot-
ing which index minerals (Chl, Grt, Crd, And, St, Ky, Sil and 
Kfs) are part of the inferred stable peak mineral assemblage, 
and three MnFMAST models, M3a, M3b and M3c, trained using 
transfer learning. For the selection of the final model architec-
ture and training setup, k-fold cross-validation has been used. 
The training dataset is split 5-fold into random splits of 80% 
training data used to calibrate the model parameters and 20% 
validation data used to evaluate the model performance. This 
strategy allows a more reproducible performance estimate to be 
obtained on small training datasets, as the effect of randomly 
selecting a well-performing validation subset is visible through 
outliers in the calculated performance metric, which is calcu-
lated five times. The randomly selected k validation sets are 
complemented with the additional independent validation data 
described above.

2.4   |   Simulation of Biotite Data

Phase equilibrium modelling is used to generate a large da-
tabase of P–T–Xbiotite data for training a prior NN in transfer 
learning. This forward modelling method allows the stable 
mineral assemblage, modes and compositions to be simulated 
at different P–T conditions for metapelitic bulk rock composi-
tions using Gibbs free energy minimisation. The minimisations 
are performed in the MnO–Na2O–CaO–K2O–FeO–MgO–
Al2O3–SiO2–H2O–TiO2–O2 (MnNCKFMASHTO) system 
using Theriak (de Capitani and Brown  1987) via pytheriak 
(Hartmeier and Lanari  2024). Modelled biotite compositions 
are then extracted from the minimisation in the MnFMAST 
system assuming all Fe as Fe2+ analogous to the natural data. 
Bulk rock compositions were randomly sampled from 5729 
pelitic whole-rock analyses in the database of Forshaw and 
Pattison  (2023b). The bulk rock compositions were reduced 
to the MnNCKFMASHTO system by projection from apatite 
while ensuring a minimum CaO content of 0.01 mol% in each 
sample. For subsolidus conditions, the system is modelled as-
suming H2O saturation. For suprasolidus conditions, the H2O 
content is incrementally halved starting from 8 mol (≈ 2 wt%), 
until the melt fraction is below 7 vol% or a minimum amount 
of 1 mol H2O (≈ 0.3 wt%) has been reached. The XFe3+ is set to 
a fixed value of 0.10, which is lower than the average XFe3+ of 
0.23 reported by Forshaw and Pattison  (2023b). This choice 
was made to account for the overestimation of Fe3+ in pelites 
by wet chemical titrations (Fitton and Gill 1970; Forshaw and 
Pattison  2023a; Hillebrand  1908; Reay  1981) and to be con-
sistent with the expected XFe3+ from mass balance of Fe3+-
bearing minerals in metapelites (Forshaw and Pattison 2021). 
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The P and T are sampled from two uniform distributions in 
the intervals of [0.15, 1.0] GPa and [400, 900]°C.

Three different thermodynamic databases, each of them con-
sisting of a set of standard state properties and a set of solution 
models (as defined in Lanari and Duesterhoeft 2019), are used 
to generate three P–T–Xbiotite datasets. The first database is the 
internally consistent thermodynamic dataset ds62 (Holland and 
Powell 2011) with solution models from White et al. (2014a) and 
White et al. (2014b) for garnet, biotite, white mica, orthopyrox-
ene, cordierite, staurolite, chlorite, chloritoid and ilmenite, and 
from Holland et al. (2022) for feldspar. The second database is 
the internally consistent thermodynamic dataset ds55 (Holland 
and Powell 1998) extended to include ideal Mn-endmembers for 
cordierite, staurolite and chlorite, with solution models from 
White et al. (2007) expanded to include ideal Mn-endmembers 
for garnet and biotite, from Coggon and Holland  (2002) for 
white mica, from White et  al.  (2002) for orthopyroxene, from 
Holland and Powell (2003) for feldspar, from White et al. (2000) 
for spinel and from White et al.  (2005) for ilmenite. The third 
database is identical to the second database except that it uses 
the biotite model from Tajčmanová et al. (2009) expanded to in-
clude an ideal Mn-endmember, instead of the model from White 
et al. (2007).

For each thermodynamic database, 100,000 random P–T–
Xbulk-rock triplets are used to simulate synthetic metapelitic 
systems. Since the stability of biotite varies depending on the 
database and the P–T–Xbulk-rock conditions, this results in 41,959 
P–T–Xbiotite data points for ds62 with the White et  al.  (2014a) 
and White et al. (2014b) biotite model (hereafter referred to as 
ds62), 49,117 for ds55 with the White et al. (2007) biotite model 
(hereafter referred to as ds55Bt07) and 43,859 for ds55 with the 
Tajčmanová et al. (2009) biotite model (hereafter referred to as 
ds55BtT).

3   |   Results—Biotite Datasets in Compositional 
Space

To extract any thermobarometric function from the biotite com-
position in metapelitic sequences or simulated datasets gener-
ated with phase equilibrium modelling, systematic variation of 
the elements in biotite with P and T must be present. This sec-
tion explores such biotite compositional variations from a model 
calibration point of view. The reader is referred to Pattison and 
Forshaw (2025) for a further discussion of potential petrological 
implications that such variation might bring.

3.1   |   Biotite Compositions from Natural Samples

The MnFMAST training dataset consists of 2′148 biotite anal-
yses. Most biotite compositions in the dataset lie close to the 
annite–phlogopite solid solution line, with a subordinate con-
tribution from the more Al-rich endmembers siderophyllite and 
eastonite (Figure 1b). There is a weak negative correlation be-
tween the Al:Si ratio in biotite and the assigned P of equilibra-
tion (Figure 1b), Pearson's correlation coefficient r = −0.28 (95% 
C.I.: −0.31 to −0.24). This indicates a potential P dependence of 
a Tschermak-type exchange reaction in biotite,

where with increasing P, the Tschermak's component de-
creases in favour of the smaller Si-ion on the tetrahedral site. 
Between the assigned T of equilibration and the Ti:Si ratio, 
there is a clear positive correlation (Figure  1c, r = 0.71, 95% 
C.I.: 0.69–0.73). These correlations agree with any of the pro-
posed incorporation mechanisms of Ti into biotite: depro-
tonation, Ti-Tschermak's exchange, or Ti-vacancy exchange 
(Cesare et al. 2003; Waters and Charnley 2002). As T and XMg 
only correlate very weakly or not at all (Figure  1c, r = 0.11, 
0.07–0.16 [95% C.I.]), temperature-dependent Fe–Mg ex-
change reactions, including biotite (e.g., Ferry and Spear 1978) 
do not exert first-order control on biotite composition. We in-
terpret this as a masking of the temperature dependence by 
varying which stable phase is partitioning Fe–Mg with biotite, 
as different limiting assemblages can control the biotite's XMg 
depending on variations in the XMg of different bulk rock com-
position (Thompson 1976).

Examining biotite compositions in atoms per formula unit 
(apfu) for a 11-anionic charges basis over P–T space, the follow-
ing observations can be made (Figure  3). Ti increases with T 
over the whole range of P, with the highest values of > 0.2 apfu 
Ti in biotite occurring above 750°C (Figure 3f). The Al content 
in biotite shows at first order a slight decrease with increasing 
P, and additionally a decrease below 1.5 apfu for the T > 750°C 
(Figure  3d). For the Si content, an increase towards low T–
high P (LT–HP) conditions is visible. In the LT–HP region of 
P–T space Si and Al trends show an anticorrelation indicative 
of a P-sensitive Tschermak exchange. Both Mn and Fetot show 
negative compositional gradients with increasing P–T, whereas 
Mg shows the opposite trend (Figure  3a–c). A comparison of 
the compositional gradients suggests that these trends mimic 
the topology of the garnet-in reaction in metapelites (compare 
Figure 3a-c with figure 3 in Pattison and Forshaw 2025). This 
behaviour is well explained by the partitioning of Mg–Fe be-
tween garnet and biotite, with Fe showing a stronger affinity for 
garnet than Mg (Hietanen 1969; Lyons and Morse 1970; Sen and 
Chakraborty 1968). For Mn, the effect is thought to be even more 
strongly pronounced, as garnet typically shows bell-shaped zon-
ing in Mn, effectively fractionating Mn from the reactive part 
of the rock (Hollister 1966; Tracy 1982). The second-order anti-
correlation of Fetot and Mg is likely due to an increase in garnet 
mode with increasing P–T (Baxter et al. 2017) or a decrease in 
the Fe–Mg partitioning coefficient with increasing T (Ferry and 
Spear 1978).

3.2   |   Biotite Compositions from Phase Equilibrium 
Modelling

For the comparison with the natural data, the simulated bio-
tite composition is reported as cations in apfu in a 20 × 20 grid 
across P–T space (Figure 4). For each grid cell, the biotite com-
position is an average of biotite generated using a randomly 
sampled metapelitic whole-rock compositions. This approach 
considers the effect of the natural geochemical variability of 
metapelites and its influence on the phase equilibrium mod-
elling of biotite.

(R1)AlIV + AlVI ⇄ SiIV + (Mg, Fe)VI
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8 Journal of Metamorphic Geology, 2025

3.2.1   |   Compositional Variation of Simulated Biotite 
and Comparison to Natural Data

The Mn in biotite generated with each of the three different ther-
modynamic databases show patterns that mimic the topology of 
the garnet-in reaction line (cf. Figure 4a–c with figures 3 and 20 
in Pattison and Forshaw 2025), as discussed above for the nat-
ural data. In the ds62 data, Mn reaches values above 0.025 apfu 
at low P–T conditions where garnet is most likely absent. These 
values are significantly higher than the natural data, which are 
generally below 0.015 apfu. For both ds55 datasets, the topology 
and the modelled absolute Mn content are consistent with the 
natural record.

Both Fetot and Mg show a strong anti-correlation with each other. 
Fetot is high and Mg is low in the P–T region outside garnet sta-
bility and vice versa within (Figure 4d–i). The dent of high Mg 
relative to Fetot at ~550°C best matches the natural data in extent 
and relative amplitude for the ds62 dataset. The absolute values 
for Fetot are slightly overestimated in ds62 but generally match 
well for both elements between simulated and natural data.

A clear anti-correlation can be observed for Al and Si in all three 
datasets, with Si decreasing from LT-HP conditions to HT con-
ditions before increasing again at LP suprasolidus conditions 
(Figure 4j–o). The compositional gradient for both Si and Al is 
significantly steeper than the one observed in the natural data 
(Figure 3d,e). There are large differences in the absolute values 
and resulting ranges between the minimum and maximum Si 
and Al contents of biotite between the different thermodynamic 
databases. Both ds55 databases have overpronounced extrema 
for Al and Si, whereas ds62 is more consistent with natural bio-
tite compositions.

The compositional gradient of Ti in all three datasets shows a 
pronounced increase towards higher temperatures while being 
close to zero with respect to pressure (Figure 4p–r). Compared 
to the natural data where Ti ranges from 0.1 to 0.25 apfu 

between 450°C and 800°C (Figure 3f), the data generated with 
the ds55Bt07 database, and to a lesser extent with ds62, sys-
tematically underestimate the Ti content with predicted values 
ranging from 0.05 to 0.15 apfu. The ds55BtT data are the most 
consistent with the natural data.

3.2.2   |   Interpretation of Compositional Data

In summary, for all three datasets generated using phase equi-
librium modelling, the topology of the compositional pattern 
of biotite in P–T space matches that observed in the natural 
data (Figure 3) to a first-order approximation. Minor topologi-
cal changes are observed in the slope of the Si and Al surfaces. 
Differences emerge when looking at the absolute content of 
certain elements in the data, the most striking being the over-
estimation of Mn in ds62, and the overestimation of Al and cor-
responding underestimation of Si in both ds55 datasets. Based 
on these observations, there is no clear recommendation for or 
against using a specific thermodynamic database to train a prior 
model for transfer learning.

4   |   Results—Model Calibration

In this section the results of the model selection experiments 
using 5-fold cross-validation are presented. The detailed results 
of the hyperparameter tuning and feature selection, includ-
ing the training curves, of all experiments can be found in the 
Supplementary Materials S1 and S2.

4.1   |   Cross-Validation for Model Selection

To select the final NN with the optimal set of hyperparameters, 
features and training procedure, the performance of potential 
candidates was evaluated using 5-fold cross-validation. The 
training dataset of natural biotite composition was split into five 

FIGURE 3    |    Compositional variation of natural biotite from metamorphic sequences in P–T space for the elements: (a) Mn, (b) Fetot, (c) Mg, (d) Al, 
(e) Si and (f) Ti, all in atoms per formula unit (apfu).
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9

FIGURE 4    |    Biotite composition for the three datasets generated with phase equilibrium modelling. (a, d, g, j, m, p) Biotite generated using the 
thermodynamic database ds62. (b, e, h, k, n, q) Biotite generated using the thermodynamic database ds55Bt07. (c, f, i, l, o, r) Biotite generated using 
the thermodynamic database ds55BtT.
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80:20 training–validation splits, which are used in the training 
and evaluation of six models selected as a result of the initial 
hyperparameter tuning and feature selection (Table 1).

The RMSE for T is significantly lower for M2a and 
M3a/b/c (MnFMAST data) than for M1 (Ti-XMg) or M2b 
(MnFMAST + index minerals) (Figure 5a). Model M2a and the 
transfer learning models M3a/b/c perform similarly, with RMSE 
T in the range of 43°C–51°C for M2a and 41°C–46°C for M3a/b/c. 
A very similar systematic is found in the RMSE P (Figure 5b) with 
RMSE P of 0.12 GPa–0.13 GPa for M2a and 0.11 GPa–0.12 GPa 
for M3a/b/c. M2b shows significantly higher estimated uncer-
tainties with a large spread for the five models evaluated in the 
cross-validation.

On the same validation sets the prior models, trained on simu-
lated data, show orders of magnitude larger RMSE compared to 
models calibrated using natural data. The mean RMSE for T and 
P are 260°C and 0.33 GPa for the model trained on ds6.2, 530°C 
and 2.19 GPa for the model trained on ds55Bt07, and 88°C and 
0.272 GPa for the model trained on ds55BtT (full results can be 
found in Supplemetary Material S3 and Figure S3.1).

A systematic relationship has been found between the RMSE for P 
and T and the range in P–T where the model is applied (Figure 6). 
The RMSE T, evaluated in 100°C wide zones, shows a u-shaped 
trend with the lowest uncertainties in the two zones between 500°C 
and 700°C. At higher temperatures, the RMSE increases, while 
the spread of RMSE between the 5-fold validation sets evaluated 
also increases systematically. Similarly, an even more pronounced 
increase in RMSE T is observed in the lowest temperature zones 
(400°C–500°C). A similar pattern is observed for the RMSE P cal-
culated in 0.17 GPa width zones (Figure 6). The RMSE P shows a 
stronger increase and higher RMSE values at high pressure. The 
RMSE P of model M2b shows that for some of the five models 
evaluated this increase in uncertainty towards higher P is avoided 
(Figure 6c). However, the cross-validation shows a strong increase 
in the dispersion of the RMSE P towards this zone.

4.1.1   |   Evaluation on Metamorphic Sequences

As a complementary assessment of the model's accuracy, an inde-
pendent set of biotite analyses from metamorphic sequences not in 
the training dataset were used (Table 2). This evaluation is exem-
plified on the sequence from the Niagara Creek region, Quesnel 
Lake (Engi 1984) in Figure 7. The predicted P–T for each biotite 
analysis in these independent test sequences can be compared to 
the relative position of the metamorphic zone of the sample in the 
corresponding MAS in P–T space. The mean and standard devia-
tion of the predicted P–T are calculated over all samples from each 
mapped zone in a MAS, resulting in a simplified single P–T esti-
mate with associated uncertainty for each zone (Figure 7b).

To test the hypothesis of increasing metamorphic grade across 
any sequence, we examine whether there is a systematic ranking 
of P–T estimates from different zones within any MAS. In con-
trast to assessing absolute P–T, this does not require a precise 
and independent reference P–T. The rank test is conducted using 
Kendall's τ rank correlation coefficient between the predicted 
P–T and the authors' zone in the MAS. Kendall's τ is calculated 
with the number of concordant (C), and discordant (D) pairs of 
ranks in both sets (Kendall 1938):

For each model, τ is calculated for all test sequences and then 
averaged, weighted by the number of zones in each sequence, to 
obtain a single metric τav that captures whether the predicted P–
T monotonous increase (� → 1.0) or decrease (� → − 1.0) across 
zones in a MAS.

For each model tested (Table  1), the five individual models 
trained in the cross-validation process are used to evaluate τav, 
which accounts for the effect of performance variation due to 
training data selection and provides a reproducible estimate 
of the model's performance. For the temperature predictions, 
all evaluated models show a positive τav. All τav values of the 

(5)� = (C − D)∕(C + D)

FIGURE 5    |    Root-mean-square error (RMSE) evaluated using 5-fold cross-evaluation for different models. (a) The RMSE T and (b) RMSE P for all 
models evaluated. The models that were calibrated either directly or via transfer learning using the MnFMAST data perform best.
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different models lie within the range of 0.33–0.66, with no sig-
nificant differences between them (Figure  8a). For the pres-
sure, the τav values range from −0.28 to 0.08 for M2a and are 
weakly negative with a spread from −0.46 to −0.06 for M3a/b/c 
(Figure 8b). When only MAS with more than two zones are con-
sidered, the τ for T increases and all models fall within the range 
of 0.56–0.79. The τ for P range increases from −0.38 to −0.01.

4.1.2   |   Investigation of the Propagation 
of Measurement Uncertainty

The propagation of measurement uncertainty is assessed below 
using two strategies. A first test was carried out using 27 biotite 
analyses from sample 28HF18 of Yogi et al.  (2024), covering a 
range close to the natural variance in this sample. Predictions 
for P–T are made with the different models (M2a, M3a–c) and 
the results are shown in Figure  9. The second test involves a 
Monte Carlo simulation of the analytical uncertainty and aims 
to isolate the analytical uncertainty from other variables that 
could influence the observed variance in the model predictions. 
Analytical errors are assumed to be Gaussian distributed and to 
be primarily controlled by the counting statistics. A normal dis-
tribution with a standard deviation of ± 1% was used to simulate 
the uncertainty of an EPMA analysis. For Mn, which is typically 
very low in biotite, a larger uncertainty of ± 10% was used to ac-
count for the higher uncertainty associated with low counts. The 
1000 simulated biotite measurements are then used to assess the 
variability of P–T predictions resulting from the propagation of 
the analytical uncertainty through the model (Figure 10).

The distributions of predicted pressures on sample 28HF18 
from are narrower for the predictions of the models M3a–c 
(Figure  9b–d) than for the model M2a (Figure  9a). A similar 
trend, although less pronounced, was observed for distributions 

of predicted temperatures (Figure  9e–h). For both P and T, 
smaller differences between the five individual predicted dis-
tributions are observed for the transfer learning models M3a–c 
(Figure 9). This indicates a more reproducible fit as the predicted 
P–T is less affected by the choice of the training data during the 
cross-validation. A similar result is observed for the Monte Carlo 
simulated measurement uncertainty, where the models M3a–c 
(Figure 10b–d/f–h) show narrower distributions for both pres-
sure and temperature predictions.

5   |   Discussion of Model Calibration

The evaluation of the prediction uncertainty, using the RMSE 
for P and T and 5-fold cross-validation, shows that the models 
trained on the MnFMAST dataset (M2a and M3a-c) perform 
best (Figure 5). The comparison with the simple system model 
M1 analogous to the thermometer of Henry et al. (2005) con-
firms that the incorporation of additional information in the 
form of the MnFMAST system benefits model accuracy. This 
is consistent with the observation of systematic changes in 
these elements in the P–T space (Figure 3) and the fact that 
this system covers almost all proposed exchange reactions 
in biotite (Dubacq and Forshaw 2024). A potential K–Na ex-
change in the interlayer site and exchanges including Fe3+ 
explicitly are not considered, because the MnNKFMAST 
and MnFe2+Fe3+MAST systems have been discarded during 
the initial feature selection. Because XFe3+ in metapelitic bi-
otite is generally low (mean ± σ = 0.11 ± 0.08) and does not 
vary systematically with metamorphic grade (Forshaw and 
Pattison  2021), any bias introduced into the P–T predictions 
by simplifying assumptions about Fe oxidation state is con-
sidered negligible. This is further supported by the lack of 
performance improvement when Fe2+ and Fe3+ were treated 
as separate input features in a feature selection experiment. 

FIGURE 6    |    T- and P-resolved RMSE P and T for all models evaluated. Data are binned separately (red markers, left boxplots) in T zones to eval-
uate the RMSE T and in P zones for the RMSE P (blue markers, right boxplots). (a) M1: Ti-XMg model, only RMSE T is evaluated, since the model is 
only trained as a thermometer. (b) M2a: MnFMAST model (c) M2b: MnFMAST + index model (d) M3a: transfer ds62 (e) M3b: transfer ds55 White07 
(f) M3c: transfer ds55 BtT. The models perform best in zones where the most training data is available, between 500°C–700°C and 0.23–0.66 GPa, 
respectively.
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TABLE 2    |    Test dataset of metamorphic sequences.

Locality References MASa Zonea Sample names of original authors

El Oro Riel et al. (2013) 2a Crd-And AV0819a, AV0813

Crd/And PU0804

Sil-(Crd-And) VI0803, VI0804, AV0815

Kfs-Sil-Crd-(And) VI0806, AV0827a, PU0810

Kfs-Crd ± Grt PU0806, AV0828d, AV0832a, AV0833

N Bavaria (Moldanubian) Blümel and 
Schreyer (1977)

2a Kfs-Sil-Crd-(And) 1, 2, 3, 15

Kfs-Crd ± Grt 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17

Harpswell Neck Forshaw (unpublished) 2c Grt PSM-50, PSM-52, PSM-65, PSM-
68, PSM-70, JFM-24, H-153

St PSM-7, JFM-11, H-7, H-71, H-77

St-And PSM-11, PSM-12, PSM-13, 
PSM-83, PSM-148, JFM-25, 
H-91,H-172, H-180, H-184

Sil-(St-And) PSM-108, PSM-118, PSM-120, 
PSM-121,H-24, PSM-18, PSM-112, 

JFM-42, H-10, H-15-2, H-102, H-126

Leech River Geen and Canil (2023) 2c St-And AG042, AG067, AG047, 
AG1161, AG049, AG0742

Sil-(St-And) AG080, AG041

Pichilemu Hyppolito et al. (2015) 2c Bt DTH-1C

Grt DTH-1F

St-And DTH-68B, 154, DTH-70A, DTH-69A

Kluane McKenzie (2023) 2c Grt 19WM262

Sil 19WM120

Kfs-Crd 19WM116, 19WM118, 19WM123

Quesnel Lake Engi (1984) 4a Grt 154:2, 202:1, 205:1, 208:1

St-Ky 26:1, 33:1, 40:1, 60:1, 100:1

Sil 27:1, 30:2, 61:1, 63:1, 73:2, 
101:1, 104:1, 110:2

Sierra de Guadarrama López Ruiz et al. (1978) 4a/4b/5 Grt 36.329

St 37.152, 36.328, 35.263, 35.325, 33.313

St-Ky 35.326, 37.074

Sil-(St-Ky) 37.043, 37.083, 8.481, 31.970, 47.172

Kfs-Sil ± Crd 32.501, 16.966, 36.764, 22.035, 39.832

Clachncuydainn Crowley et al. (1996) 4a/4b/5 Grt 135, 63

St 13b, 13d

Saglek Mengel and 
Rivers (1994)

4a/4b/5 Bt F84-211

St-Ky F83-22, F83-79, F83-76, BR277

Sil-(St-Ky) BR-169, F83-131
aNomenclature follows Pattison and Forshaw (2025).
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However, in highly oxidised systems—where most Fe may be 
present as Fe3+—different exchange mechanisms could con-
trol Fe incorporation in biotite, and the current calibration is 
unlikely to be valid under such conditions.

The RMSE of ± ~95°C of model M1 trained on Ti and XMg is 
substantially higher compared to the uncertainty reported for 
the original calibration of the Ti-in-Bt thermometer of ± 25°C 
(Henry et  al.  2005). We suggest that this difference is mainly 

FIGURE 7    |    Model evaluation using the Quesnel Lake metamorphic sequence. (a) Map of metamorphic zones and sample location at Quesnel Lake 
modified after Engi (1984). Samples from these zones can be used as test data even in the absence of a precise estimate of the exact P–T conditions, as 
it can be tested whether their relative order within the sequence is correctly predicted. (b) P–T predictions for biotite analyses reported in Engi (1984) 
from the Grt, St-Ky and Sil zones obtained with different models (M2a and M3a–c). The dots represent the mean P–T calculated from multiple analy-
ses within each zone. The error bars (representing the standard deviation) are only shown for the predictions made with M2a for better readability but 
are of similar amplitude for the other models. A reference P–T field is given based on the P–T conditions for each zone in Supplementary Material S4.

FIGURE 8    |    Boxplots showing the rank correlation coefficient τav, to test if a model is predicting the systematics of P–T changes across metamor-
phic sequences. A weighted average τav of τ from 10 test sequences is calculated considering the length and the number of zones for each sequence. 
For each model, the evaluation is done five times using the five models trained for cross-validation to obtain a reproducible metric. (a) τav for the 
temperature across metamorphic sequences. The positive τav indicates that the models tend to correctly predict increasing temperatures across the 
zones of a MAS. (b) τav for the pressure across metamorphic sequences.
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due to the method used by Henry et al. (2005) to obtain very pre-
cise T estimates for their constraints. These results imply that 
there is great potential for future calibration of an accurate bio-
tite thermometer by combining their T allocation method with 
a model using biotite compositional vectors in the MnFMAST 
system as input. The large spread in both RMSE T and RMSE 
P for model M2b is a strong indication of overfitting (Figure 5). 
This emphasises the importance of thorough model evaluation, 

as only cross-validation revealed the tendency to overfit. In the 
initial feature selection tests, the model appeared to perform 
better on a randomly selected validation set when including 
index minerals (Figure S2.2).

The significantly higher RMSE of the prior models (Figure S3.1) 
is interpreted as resulting from the differences in biotite com-
positional patterns across P–T in the natural record compared 

FIGURE 9    |    Distribution of predicted P (top, blue) and T (bottom, red) for 27 chemical analyses of biotite from sample 28HF18 of Yogi et al. (2024). 
Predicted pressures for five models trained during cross-evaluation for M2a (a), M3a (b), M3b (c) and M3c (d). Predicted temperatures for five models 
trained during cross-evaluation for M2a (e), M3a (f), M3b (g) and M3c (h). The pressure and temperature distributions are shaded differently as the 
same prediction is repeated five times for each of the five models calibrated in the cross-validation process (see text). Narrower and more overlapping 
distributions for the models using transfer learning (b–d, f–h) indicate a more precise and reproducible fit.

FIGURE 10    |    Predicted P (top, blue) and T (bottom, red) on a single analysis picked from sample 28HF18 of Yogi et al. (2024) shown as a down-
facing triangle. Distribution of predicted P and T for multiple compositional analyses from that single biotite analysis augmented using Monte Carlo 
simulation to reproduce a theoretical measurement uncertainty (see text). Predicted pressures for five models trained during cross-evaluation for 
M2a (a), M3a (b), M3b (c) and M3c (d). Predicted temperatures for five models trained during cross-evaluation for M2a (e), M3a (f), M3b (g) and 
M3c (h). Narrower and more overlapping distributions for the models using transfer learning (b–d, f–h) indicate a more precise and reproducible fit.
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to phase equilibrium modelling, as described in Section 3.2.2. 
Although these differences have been found to be relatively 
minor, they represent shifts in the distribution between natural 
and simulated data, resulting in relevant systematic changes in 
P–T prediction.

Resolving the RMSE in P for zones of different P and the RMSE 
T for zones in T, respectively, is inconclusive for the model se-
lection (Figure 6). However, this test shows that all the models 
evaluated are susceptible to regression to the mean. All models 
show an excellent fit with the lowest RMSE values for pressures 
between 0.3 and 0.6 GPa and temperatures between 500°C and 
700°C (Figure  6). A comparison with the distribution of the 
training data in P–T (Figure 1a) shows that this is the region in 
P–T space where most data points fall.

Metamorphic sequences provide a record of frozen equilib-
rium peak metamorphic conditions preserved as metamor-
phic field gradients (Pattison and Forshaw 2025; Pattison and 
Tracy 1991). They are a promising complementary approach 
to systematically assess the accuracy of a thermobarometer 
without the need for precise numerical P–T estimates for indi-
vidual test samples. Instead of comparing absolute differences 
between a P–T estimate and a reference, sequences allow an 
assessment of the accuracy by focusing on the relation be-
tween metamorphic zones within a MAS leveraging the se-
quential information. Samples from many low P sequences 
are interpreted to have equilibrated along isobaric P–T paths 
developed in contact aureoles (Pattison and Tracy  1991). 
While at elevated P, field gradients are typically established 
by a succession of increasing thermal maxima from P–T loops 
of regional metamorphism (e.g., Copley and Weller 2022). In 
the second case, the Ppeak and Tpeak do not coincide, and the 
pressure recorded may not be Ppeak. This complicates the in-
terpretation of tests assessing whether P–T predictions across 
different MAS zones increase monotonously. As the tempera-
ture can be safely assumed to increase along sequences of all 
P, testing for a monotonous increase across the sequential data 
provides a reproducible test for a thermometer's accuracy. For 
the pressure, no clear relation is expected to be found as the 
low-pressure MAS are most likely very close to isobaric and 
in the highest-pressure MAS, the possibility of (partial) re-
equilibration during exhumation at the Tmax prevents the pre-
diction of a simple systematic increase in the recorded P. This 
makes MAS less suited to test barometers. Therefore, we focus 
our discussion on the thermometer. The τav values for T of all 
models show positive values around 0.5, confirming that the 
predictions of the NN thermobarometer reproduce a monoto-
nous increase in T across sequences. A possible explanation 
for the only weak correlation, besides the limited predictive 
accuracy, may be the scattered distribution of predicted P–T 
for different biotite analyses from the same zone (see the error 
bars in Figure  7b). This distribution is interpreted to result 
from the partial persistence of metastable biotite or localised 
partial retrogression in the samples as shown by studies re-
porting compositional maps (e.g., Blackburn 1968; Lanari and 
Duesterhoeft 2019; Lanari and Hermann 2021).

The increase of the correlation metric for T when reducing the 
test dataset to sequences of two or more recorded zones highlights 
another complicating factor for the tests relying on MAS. Some 

metamorphic sequences might not record a straight-forward met-
amorphic field gradient but a more complex geological history 
that is especially hard to identify with only a few zones of the 
MAS realised in the rock record. This can result in misinterpret-
ing the underlying P–T path and, therefore, inferred P–T.

The precision of the biotite thermobarometer is sensitive to 
the measurement uncertainty of the input biotite analyses. 
For a precise thermobarometer, it is desirable that the analyt-
ical uncertainty of the EPMA does not itself result in a large 
spread of the predicted P–T. To some extent, small composi-
tional perturbations can naturally cause large differences in 
the predicted P–T, when exchange reactions involving an el-
ement i have a very steep slope of the concentration ci with 
respect to P or T, large �ci

�P
 or �ci

�T
. One element that shows this is 

Ti in biotite, which was the property exploited in the calibra-
tion of the Ti-in-Bt thermometer (Henry et al. 2005; Wu and 
Chen  2015). Furthermore, analytical uncertainties typically 
result in normally distributed uncertainties for the biotite 
composition. Consequently, the predicted P–T should also be 
normally distributed so that no systematic shifts in distribu-
tion are introduced by the transformation of the model. The 
tests conducted to assess the propagation of compositional un-
certainty to the P–T predictions show that the models using 
transfer learning (M3a–c) tend to result in more congregated 
predictions for both P and T for a biotite composition with as-
sociated uncertainty (Figures 9 and 10). Furthermore, this test 
suggests that a minimum uncertainty on the precision of the 
order of ± 25°C and ± 0.02 GPa is to be expected solely from 
the propagation of typical analytical errors in a biotite compo-
sition measurement.

5.1   |   Model Selection

In conclusion, the models using the transfer learning strategy 
systematically perform best in the evaluation of RMSE, the test 
for monotonous increase across metamorphic sequences, and 
the qualitative assessment of propagating analytical uncertainty 
in the biotite composition. All models using transfer learning 
perform similarly, regardless of which dataset was used to train 
the prior model. However, M3c using the prior model trained 
with the dataset ds55BtT was selected, as this model showed 
narrow and almost perfectly normal distributed P–T predictions 
in the propagation of Monte Carlo simulated measurement un-
certainty with a minimal scatter of the individual distributions 
for the five models from cross-validation.

The prior models used for transfer learning with a fine-tuning 
approach represent different starting points for converging to a 
minimum of the loss function. One might argue that the prior 
model trained on ds55BtT is closer to an optimal solution for the 
natural dataset, given its lower RMSE compared to the other 
priors when evaluated on the natural data. However, it is im-
portant to note that a better-performing starting point does not 
necessarily lie closer to the optimal solution. It simply provides 
a more favourable starting position for convergence on a high-
dimensional loss surface, which may be flat in places and con-
tain multiple local minima. This should not be interpreted as an 
assessment of how well a particular thermodynamic database 
reproduces the natural record of metamorphic biotite.

 15251314, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

g.70004, W
iley O

nline L
ibrary on [04/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 Journal of Metamorphic Geology, 2025

5.1.1   |   Training of the NN-Thermobarometer

A NN with four hidden layers consisting of 64 neurons each was 
trained as the final model. The model requires an input biotite 
composition in the MnFMAST system, and outputs a P–T vector. 
The model's parameters were pre-trained using the generated 
dataset ds55BtT to train a prior model. For the final training, 
90% of the training database was used, while the validation frac-
tion was reduced to 10%. This change was made to maximise the 
available training data. It was facilitated because the previous 
tests had shown that overfitting was not an issue for the chosen 
model setup. The input data were normalised to a range of [−1, 
1] and the P–T data in the training set were scaled to the range 
of [0.15, 1.0] GPa and [400, 900]°C, respectively, using a mini-
mum–maximum scaler. Training was performed in batches of 
50 data points using the Adam algorithm (Kingma and Ba 2014) 
as the optimiser with inverse time learning rate decay starting 
with a small initial learning rate of 0.0005. During training, ad-
ditional regularisation in the form of dropout layers was applied 
with a rate of 20% after each of the first three hidden layers. The 
training was stopped by a validation loss minimum after 109 ep-
ochs at a validation RMSE of ± 0.0106 GPa and ± 40.8°C.

6   |   Application of the Thermobarometer

The final NN biotite thermobarometer is applied to biotite of 
a metapelite from the Central Alps. This metapelite, sample 
MA9330, has been previously studied by Todd and Engi (1997) 
and Lanari and Hermann  (2021). The inferred peak mineral 
assemblage consists of garnet porphyroblasts in a matrix of 
kyanite, white mica, plagioclase, biotite, quartz and acces-
sory rutile (Lanari and Hermann  2021; Todd and Engi  1997). 
Staurolite, chlorite and ilmenite are interpreted as retrograde 
phases locally overgrowing kyanite, garnet, biotite and rutile 
(Lanari and Hermann 2021). A first estimate for the peak met-
amorphic conditions of 617°C ± 11°C and 0.618 ± 0.050 GPa was 
proposed by Todd and Engi (1997) who used multi-equilibrium 
calculations (TWQ software, Berman  (1991)). A possible P–T 
path was refined by Lanari and Hermann  (2021) using itera-
tive thermodynamic modelling (Bingo-Antidote, Duesterhoeft 
and Lanari  2020). These authors proposed at least three dis-
tinct metamorphic stages recording prograde relics of the max-
imum burial at 1.1 GPa–560°C, the equilibration at the peak 
temperatures at 0.9 GPa–620°C, and a partial retrogression at 
0.65 GPa–580°C.

The NN thermobarometer is applied to the compositional map 
‘Area 1’ of Lanari and Hermann  (2021). The newly applied 
thermobarometer predicts a pressure of 0.45 GPa (interquartile 
range: 0.41–0.51 GPa) and temperature of 606°C (interquartile 
range: 587°C–627°C) for the crystallisation of matrix biotite 
(Figure 11).

The predicted temperature overlaps with both determinations of 
the peak metamorphic conditions by multi-equilibrium calcula-
tion (Todd and Engi 1997) or iterative thermodynamic modelling 
(Lanari and Hermann 2021). The temperature for the retrograde 
stage proposed by Lanari and Hermann (2021) lies just below the 
lower end of the interquartile range of temperatures predicted 
by the NN thermobarometer. Partial re-equilibration of biotite 

resulting in a mixed signal of peak and retrograde equilibration 
temperature could possibly explain the predicted temperature 
distribution (Figure 11c). However, Lanari and Hermann (2021) 
report textural evidence of such retrogression in domains close 
to garnet porphyroblasts and not in the matrix domain analysed 
here. Therefore, we interpret the temperature variation as the 
result of propagating the analytical uncertainty from the compo-
sitional map. This is further justified by the excellent agreement 
between the Ti-in-Bt thermometers of Henry et al.  (2005) and 
Wu and Chen (2015), and the predicted temperature of the NN 
thermobarometer for biotite (Figure 11c).

For the pressure predictions, a large discrepancy of 0.2–0.5 GPa 
is observed between the NN thermobarometer's predictions 
and the reference P–T determined by multi-equilibrium and 
iterative thermodynamic modelling (Figure 11). The predicted 
pressure of 0.45 GPa is well below the pressures proposed by 
Lanari and Hermann (2021) for peak metamorphic conditions 
of 0.9 GPa, or even 1.1 GPa at the maximum burial depth. The 
0.62 GPa determined by Todd and Engi (1997), which is in good 
agreement with the metamorphic stage of the proposed partial 
retrogression, suggests that biotite may record a pressure closer 
to the NN predictions. However, it cannot be excluded that this 
is coincidental, and that the underestimation of pressure is an 
inherent problem of the NN thermobarometer, since system-
atic analysis of the NN performance shows a tendency for a 
strong regression towards the mean in the predicted pressures 
(Figures 6f and 12b) as discussed below.

7   |   Performance Evaluation

To test the validity of the NN as a thermobarometer appli-
cable to metamorphic biotite and to assess the uncertainty 
associated with the predicted P–T, the final model was eval-
uated on a test dataset compiled from the literature (Table 3 
and Figure 12). For the thermometric predictions the uncer-
tainty is estimated as a RMSE of ΔT = ± 45°C (Figure  12a). 
The predictions on the test samples with the uppermost and 
lowermost reference temperature indicate a minor regression 
to the mean phenomena. Although only weakly pronounced, 
this should be considered when applying the model to other 
samples and interpreting the predicted temperature. Looking 
at the different types of test data individually, the predictions 
on the ‘single analysis’ tend to overestimate the temperature 
given by the original authors to these samples and the errors 
are not centred around zero. This is explained by the regres-
sion to the mean because these ‘single analysis’ data points are 
all in the lower half of the temperature range tested. No such 
systematic overestimation can be observed for ‘multi analy-
ses’ and ‘EPMA maps’. The thermometer uncertainty ΔT, of 
± 45°C, is within the expected uncertainty arising from the P–
T assignment method. The metamorphic zones in MAS used 
to assign P–T to the biotite analyses in the training dataset are 
of a width of 50°C–100°C (see in Section 2.1). Therefore, the 
model performance is most likely limited by the uncertainty 
of the temperature in the constraints used and convergence to 
a generally valid optimal solution was successful.

The barometric predictions on the test set show an RMSE of 
ΔP = ± 0.37 GPa (Figure 12b). However, the pressure predictions 
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FIGURE 11    |    An application example of the final model applied to sample MA9330, a metapelite from the Central Alps. The compositional map 
obtained by Lanari and Hermann (2021) with predicted pressure (a) and temperature (b) for biotite. (c) The predicted temperatures of biotite equili-
bration are compared with the results of Ti-in-Bt thermometry using the calibrations of Henry et al. (2005) and Wu and Chen (2015). The reference 
temperature was determined by Lanari and Hermann (2021) using iterative thermodynamic modelling (see text). (d) Comparison between the NN 
predicted pressures and the reference pressure for the equilibration at the thermal peak determined by iterative thermodynamic modelling.

FIGURE 12    |    Evaluation of the final model on the test dataset compiled from the literature. The dataset consists of single analyses selected by the 
original authors, multiple analyses of the biotite composition, or compositional maps of biotite for which P–T were determined using a combination of 
methods, most including phase equilibrium modelling, to obtain an estimate of the metamorphic conditions. (a) The predicted T by the model plotted 
against the reference T. (b) The predicted P plotted against the reference P.
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seem to be systematically biased towards the lower pressures. 
As the training dataset is dominated by biotite coming from low-
pressure (Plast equilibrated < 0.6 GPa) rocks (Figure 1a), this is inter-
preted as a strongly pronounced asymmetric regression to the 
mean phenomena. This strong systematic bias limits the use of 
the barometer to this pressure range. The uncertainty estimated 
using the RMSE P should not be taken as the true model uncer-
tainty, as this metric does not account for the systematic bias 
towards lower pressures. When applied to low-pressure rocks 
the uncertainty could be significantly lower. However, it will be 
drastically underestimated at pressures > 0.6 GPa.

The test dataset also reveals two important limitations of in-
vestigating metapelitic phase equilibria using MAS. The MAS 
are limited towards a relatively low Pmax, recorded by the 
Grenvillian-type sequence (MAS 5) with a reported pressure 
maximum of ~0.8 GPa (Pattison  2001; Rivers  1983). Only six 
localities in the worldwide compilation show this MAS, fur-
ther skewing the database towards lower-pressure sequences 
(Pattison and Forshaw  2025). Further, as the sequences are 
laid out by the equilibration of a metamorphic rock during 
the Tmax of its P–T path (Pattison and Forshaw 2025), they are 
inherently biased towards the pressure at Tmax and not Pmax. 
Evidence of equilibration at higher pressures during orogene-
sis, sometimes only present as relics like cores in zoned min-
erals or metastable phases at the thermal maximum, can be 
found in metapelites from the Alps (Lanari and Hermann 2021; 
Piccoli et  al.  2022), the Scandinavian Caledonides (Jeanneret 
et  al.  2022), the Appalachians (Hillenbrand et  al.  2023) and 
the Himalayas (Airaghi et al. 2017; Cawood 2024; Lanari and 
Duesterhoeft 2019).

The absolute uncertainties for empirical thermobarometers are 
generally on the order of ± 0.1 GPa and ± 50°C (Essene  1989). 
Therefore, the machine learning calibration presented here has 
resulted in a model that can predict the temperature of biotite 
equilibration with an uncertainty comparable to other methods. 
The calibration of a barometer has failed due to a systematic 

bias towards the low P dominated training data that prevents 
the model from being applied. Potential sources of uncertainty 
in the training data that hinder a more accurate calibration are 
as follows:

1.	 A lack of accuracy in the constraints, when using the 
MAS with individual metamorphic zones spanning over 
50°C–100°C to determine a P–T for each biotite analysis. 
While the method used with ordering the samples after 
the temperature predicted by the Ti-in-Bt thermometer of 
Henry et  al.  (2005) proved itself effective, it seems to be 
limited to the uncertainty achieved here and further is po-
tentially biasing the model towards that older calibration of 
Henry et al. (2005).

2.	 The persistence of metastable biotite or localised partial 
retrogression. If the measured biotite composition does not 
represent the equilibrium composition that corresponds to 
the P–T determined by a peak assemblage characteristic for 
a specific zone in a MAS, it introduces additional uncer-
tainty in this P–T–Xbiotite triplet.

3.	 The analytical precision of the EPMA analysis and the 
treatment of compositional data.

Focusing on the thermometer in the NN model, the calibration 
of this study is compared with existing single-crystal thermome-
ters for biotite from Henry et al. (2005) and Wu and Chen (2015), 
both of which are based on the temperature dependence of Ti in-
corporation in biotite. All three models are (re-)evaluated on the 
test dataset to ensure comparability. They all perform similarly 
on the test data (Figure 13). The calibration of Henry et al. (2005) 
shows the lowest RMSE and a distribution of absolute deviations 
that is symmetrical around zero (Figure  13c). The calibration 
presented in this work and the Ti-in-Bt thermometer of Wu and 
Chen  (2015) show similar RMSE. The distribution of absolute 
errors for the Wu and Chen (2015) model is biased towards neg-
ative absolute deviations suggesting a possible systematic under-
estimation of temperatures in the calibration (Figure 13d), while 

FIGURE 13    |    Comparison of the single-crystal biotite temperature predictions by the neural network obtain in this work with Ti-in-Bt thermom-
etry. (a) Temperature predictions on the test dataset plotted against the reference temperature for the neural network, the thermometer of Henry 
et al. (2005), and Wu and Chen (2015). Distribution of the absolute errors for the neural network (b), Henry's thermometer (c) and the thermometer 
of Wu and Chen (d).
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the NN thermometer shows a similar but less pronounced bias 
towards positive absolute deviations (Figure 13b). It is quite pos-
sible that this test underestimates the uncertainty of the Henry 
et al. (2005) Ti-in-Bt model, because it is a well-established ther-
mometer and was used along with other methods to constrain 
the peak P–T in 18 of the 48 samples included in the test dataset 
(Table 3).

8   |   Physical Significance of the Empirical Biotite 
Thermometer

The NN thermobarometer is a purely empirical fit to the natu-
ral data of biotite from metamorphic sequences. The underly-
ing metamorphic processes controlling a biotite composition to 
crystallise at a certain P–T, typically thought of as a combina-
tion of thermodynamic equilibrium and reaction kinetics, are 
not explicitly modelled but must be implicitly considered by the 
model, being the causal link causing the observable trends cap-
tured with the NN.

A NN is a curve-fitting algorithm, which is fundamentally dif-
ferent from the Random Forest based ensemble models that have 
recently been successfully used to calibrate machine learning 
geothermobarometers (Jorgenson et al. 2022; Petrelli et al. 2020; 
Weber and Blundy  2024). The fitted curve is a differentiable 

mathematical function that can be examined using calculus. 
By using partial derivatives, the elements that cause the largest 
changes in the P–T predictions can be identified. The partial de-
rivatives of the barometer �P

�xi
 and thermometer �T

�xi
 with respect to 

each input element xi is calculated at all 2148 points in the train-
ing dataset. The amplitude of compositional variation in biotite 
differs between elements. By multiplying a vector �⃗u, 10% of the 
interquartile range for each element as entries, and the deriva-
tives each partial derivative is normalised:

The normalised partial derivatives (PDVs) of the barometer 
with respect to Si, Ti, Fetot and Mg are symmetrical around zero 
(Figure  14a). The negative normalised partial derivatives with 
respect to Al would be consistent with a pressure-dependent 
Tschermak substitution observed in synthetic biotite from piston-
cylinder experiments at higher pressures (Hermann  2003). The 
mostly negative PDVs with respect to Mn are interpreted to result 
from the scavenging of Mn by garnet within the garnet stability 
field at elevated pressures (Baxter et al. 2017; Tracy 1982). Since it 
is not possible to distinguish artefacts from features of the function 
with the poorly performing calibration, the analysis of the barome-
ter is not pursued further.

(6)𝜕P

𝜕xi
⋅ �⃗u or

𝜕T

𝜕xi
⋅ �⃗u

FIGURE 14    |    Analysis of the curve fitted as a thermobarometric function by the machine learning model. (a) Partial derivative (PDV) of the ba-
rometer with respect to each input element normalise by a 10% change of the expected natural variation for each element. (b) Partial derivative of the 
thermometer with respect to each input element normalised by a 10% change of the expected natural variation for each element. (c) Normalised PDVs 
of the thermometer with respect to Ti plotted against the Ti content of the biotite evaluated. The trend shows that the increase in predicted tempera-
tures with increasing Ti diminishes towards biotite with a high Ti content. (d) Normalised PDVs of the thermometer with respect to Al in P–T space 
indicate a switch of the effect of Al incorporation on the predicted temperatures. For temperatures below ~620°C the incorporation of Al has little 
effect on the predicted temperature, while above predicted temperatures are lowered when Al increases.
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The normalised PDVs of the thermometer are largely negative 
with respect to Si, Al, Fetot and Mn (Figure 14b). Only for Ti 
are the PDVs predominantly positive. The normalised PDVs 
with respect to Mg are small and centred around zero. As the 
biotite composition is put in the NN as cations per formula 
unit, the sum of cations is fixed, and therefore, its variables 
are dependent. A dependency of Mg potentially explains why 
it is not used in the thermometer by the NN. The PDVs of 
T with respect to Ti show an increase of the predicted tem-
perature between 3.0°C (25th percentile of PDVs) and 7.6°C 
(75th percentile PDVs) for an increase in the Ti content cor-
responding to 10% of the natural variation. When the Ti con-
tent in biotite is already high, the same increase of Ti results 
in a much smaller increase in predicted T compared to bio-
tite with low Ti (Figure 14c). This agrees with the proposed 
mathematical descriptions of the Ti-saturation in biotite using 
a power-law (Henry et  al.  2005) and indicates the dominant 
incorporation mechanism of Ti might change towards higher 
Ti content in biotite. Further evidence of such a change can 
be seen by examining the normalised PDVs of the thermom-
eter with respect to Al (Figure 14d). For temperatures below 
~620°C, these PDVs are small (± 2°C) and scattered around 
zero. Above ~620°C, negative PDVs dominate, extending as 
low as −6°C per normed change in Al. This is not compatible 
with a Tschermak-type Ti substitution, (VI)Mg2+ + 2(IV)Si4+ ↔ 
(VI)Ti4+ + 2(IV)Al3+, where Al and Ti would strongly correlate. 
Instead, the decoupling of the effect on T by Al and Ti fa-
vours Ti deprotonation, (VI)Mg2+ + 2(OH)− ↔ (VI)Ti4+ + 2O2−, 
as the dominant process. Ti incorporation by deprotonation 
has been shown to most likely be the dominant process re-
sulting in Ti enrichment in metamorphic biotite (Dubacq and 
Forshaw  2024). Henry et  al.  (2005) note that the dominant 
Ti-incorporation mechanism may change with increasing 
metamorphic grade. In their data, deprotonation best fits bi-
otite above the staurolite zone, while a Tschermak-type sub-
stitution best explains the observed compositional variation 
below. Likewise, the analysis of the NN thermometer suggests 
that the Ti-deprotonation might only become relevant at tem-
peratures above ~620°C. While the study of the atom-scale 
geochemical processes is beyond the scope of this study, this 
analysis using PDVs demonstrates the potential feedback of 
purely empirical machine learning into physical models of 
metamorphic processes.

9   |   Conclusion

To study metamorphic processes, the ability to accurately pre-
dict P–T for the natural record of metamorphic rocks and min-
erals is crucial. However, calibrating thermobarometers on 
natural data is challenging since suitable constraints with pre-
cise P–T estimates, that are difficult to obtain without biasing 
the model towards an existing calibration, are often sparse. In 
this work, we addressed this by training a NN on the natural re-
cord of biotite from mineral assemblage sequences. The model is 
pre-trained on a large dataset simulated with phase equilibrium 
modelling before fitting the natural data. Utilising this transfer-
learning approach allows the fitting of a high-capacity machine 
learning model to sparse natural data without overfitting. We 
outline a calibration strategy that provides petrologists with a 
systematic and reproducible approach for calibrating machine 

learning models as thermobarometers and provide complemen-
tary tests to evaluate the performance of a model. We conclude 
the following:

1.	 Metamorphic assemblage sequences provide relative nat-
ural constraints for the calibration of a thermobarometer. 
The sequential information of metamorphic zones can 
provide a P–T estimate independent of the measured min-
eral composition. This approach reduces potential bias 
towards a specific calibration by not relying on existing 
geothermobarometers. This is because it is based on min-
eral assemblages and not mineral composition. Therefore, 
any interpretation of a metamorphic field gradient, ulti-
mately providing the P–T, emerges from the examination 
of evidence from multiple observations across a sequence.

2.	 The available natural constraints are relatively sparse 
and are strongly clustered around intermediate-pressure 
amphibolite-facies conditions. This sparsity and cluster-
ing pose critical limitations to the performance of any cal-
ibrated model due to pronounced regression to the mean 
phenomena, which is a lasting challenge when applying 
machine learning to petrological problems. In the case 
presented here, this hinders the successful calibration of a 
barometer using the MAS data.

3.	 Phase equilibrium modelling using three different ther-
modynamic databases can provide large datasets that 
cover the complete P–T space of biotite stability, filling 
data gaps in the sparse natural record. This synthetic 
data provides a suitable prior to employ transfer learn-
ing in the calibration of NNs as thermometers. All three 
of the generated datasets resemble the natural record of 
biotite composition, with only minor deviations in the 
topology of compositional gradients or absolute concen-
trations of elements.

4.	 The calibration strategy presented for machine learning 
thermobarometers provides a workflow for systematically 
selecting input features, tuning hyperparameters (includ-
ing learning rates, model architectures and regularisation 
methods) and benchmarking potential models. The com-
bined use of K-fold cross-validation, evaluation of predic-
tion accuracy along metamorphic sequence P–T trends, 
and precision assessment via Monte Carlo propagation 
of measurement uncertainties is well suited to machine 
learning problems with limited data. Importantly, this ap-
proach avoids the need to withhold additional data solely 
for model validation.

5.	 The final comparison with test data compiled from pub-
lished estimates using a combination of multiple thermo-
barometric methods indicates that the temperature can be 
predicted with an RMSE of ± 45°C. A reliable prediction 
of pressure is hindered by a systematic underestimation 
of pressures > 0.6 GPa, which is interpreted as a result of 
scarce natural data above these conditions. The estimated 
uncertainty of the thermometer is in good agreement with 
Ti-in-Bt thermometry evaluated on the same test dataset.

6.	 The comparison of the calibration presented here with 
other single-crystal biotite thermometers shows a very sim-
ilar performance of all three calibrations. The uncertainty 
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of predicted T on natural test data spanning the P–T of 
crustal metamorphism is around ± 50°C for all thermom-
eters. The original calibration of Henry et  al.  (2005) ap-
pears to be the most precise; although calibrated only for 
P between 0.4 and 0.6 GPa in graphitic ilmenite- or rutile-
bearing assemblages, its simple formulation has wide gen-
eral validity.
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