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 A B S T R A C T

Chemical diffusion of major elements in garnet is a common phenomenon in amphibolite to granulite facies 
metamorphic rocks. The study of this process has led to important constraints on the rate and timescale of 
metamorphism, for instance using geospeedometry and forward thermodynamic modelling. However, to date, 
most models have assumed spherical coordinates and simple geometries when modelling diffusion in garnet. In 
this study, we present a framework for running 3D multicomponent diffusion models from real grain geometries 
obtained by micro-computed tomography. We introduce an open-source code, DiffusionGarnet.jl, written for 
high performance in the Julia programming language. We demonstrate the high efficiency of the numerical 
solver, a stabilised explicit method, and its scalability using GPU acceleration. This approach is applied to 
two garnet grains with different characteristics, a euhedral well-shaped grain and a deformed sub-euhedral 
grain with a high connectivity to the matrix from core to rim. Starting from a similar initial composition 
and at constant conditions of 700 ◦C and 0.8 GPa for 10 Myr, the models show results with very different 
characteristics. The euhedral grain shows results similar to those predicted with a spherical assumption, largely 
preserving its original zoning. In contrast, the sub-euhedral grain shows significant re-equilibration, nearly 
erasing completely its initial zoning. This behaviour is caused by the high connectivity with the matrix. In 
addition to providing a robust solver for 3D diffusion modelling, these results demonstrate the role of grain 
geometry and matrix connectivity on intra-grain diffusion and highlight the power of 3D approaches to properly 
study the complexity of natural grains.
1. Introduction

Garnet is a common mineral in metamorphic rocks and often ex-
hibits chemical zoning within individual grains (Atherton and Ed-
munds, 1966; Evans, 1965; Baxter et al., 2013; Rubatto et al., 2020). 
This zoning results primarily from variations in pressure (𝑃 ) and tem-
perature (𝑇 ) conditions as well as the availability of elements during 
growth (Hollister, 1966; Spear et al., 1984; Tracy et al., 1976). Chem-
ical zoning is often altered by syn- and post-growth intracrystalline 
diffusion when the temperature remains above a certain threshold for 
a sufficient duration, with the extent of modification depending on 
the cooling rate and the specific element of interest (Yardley, 1977; 
Woodsworth, 1977; Dempster, 1985; Li et al., 2018). Consequently, 
diffusion has been used to constrain the rate and duration of geological 
processes, leading to the development of diffusion chronometry, which 
has been applied extensively to garnet (Lasaga, 1983; Ganguly et al., 
1996, 2000; Faryad and Chakraborty, 2005; Ague and Baxter, 2007; 
Devoir et al., 2021; Cheng et al., 2020; Spear, 2014). In these studies, 
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numerical modelling has proven to be an efficient tool to retrieve 
geological constraints. In this particular case, an initial zoning pattern 
and (𝑃–)𝑇  conditions are assumed, and time constraints are obtained 
by forward modelling under the assumption that the observed zoning 
pattern is dominantly controlled by post-growth diffusion. Numerous 
forward numerical models have also been successfully developed to 
account for both growth and syn- to post-diffusion of major elements in 
garnets (e.g. Caddick et al., 2010; Florence and Spear, 1991). In these 
models, garnet is often approximated as a growing sphere composed of 
concentric shells with different compositions, such as in the software 
Theria_G (Gaidies et al., 2008) and CZGM (Faryad and Ježek, 2019). 
The garnet composition in this case is obtained using phase equilibrium 
modelling. Diffusion between growth steps is then modelled using 
spherical coordinates along a fixed 𝑃 –𝑇  path through time (𝑡).

While spherical symmetry is a common and reasonable assumption, 
given that euhedral garnets typically form as regular dodecahedra, nat-
ural garnet grains often deviate from this ideal shape. This can be due to 
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many commonly occurring processes, such as syn- or post-deformation 
during growth, dissolution–precipitation, partial equilibrium, resorp-
tion or entrapment of inclusions (e.g. Ague and Carlson, 2013; Carlson, 
2002; Storey and Prior, 2005; Baxter et al., 2017; Lanari et al., 2017; 
Konrad-Schmolke et al., 2007; Manzotti et al., 2024). To properly 
model these grains, it is necessary to develop numerical frameworks 
that do not use idealised shapes, but instead use realistic and complex 
geometries. Recent studies have modelled multicomponent diffusion in 
3D in garnet using a dodecahedra shape (Gaidies et al., 2022) and 
linear trace element diffusion in garnet using complex geometries (Wu 
et al., 2025). These studies used finite element method (FEM) to explore 
the impact of assuming an ideal geometry on diffusion chronometry 
compared to more complex geometries. However, the impact of more 
complex boundary conditions on major element garnet composition 
involving both matrix and inclusions still need to be assessed for 
natural garnet geometries. This requires the ability to retrieve natural 
garnet geometries consistently. It also requires the development of 
new efficient numerical methods and tools to solve multicomponent 
diffusion in 3D Cartesian coordinates to be able to explore different 
geological scenarios with a reasonable total run time.

A popular approach to obtain 3D imaging of rock sample is micro-
computed tomography (µCT). This approach allows individual minerals 
to be segmented from their surrounding matrix and inclusions based 
on density contrasts (Ketcham and Carlson, 2001). Micro-computed 
tomography imaging has been successfully applied to garnets in meta-
morphic rocks, allowing grain-size distribution analyses and providing 
insights into garnet growth and dissolution processes (e.g. Hartmeier 
et al., 2024; George and Gaidies, 2017; Li et al., 2024). This study 
focuses on developing a framework for modelling multicomponent ma-
jor element post-growth diffusion in garnet using real grain geometries 
extracted from µCT. First, we present two natural garnet geometries 
segmented from µCT scans. Using a real chemical profile as a reference, 
we generate 3D chemical compositions to serve as initial conditions for 
diffusion modelling. We then present DiffusionGarnet.jl (Dominguez, 
2023), a Julia package designed for 3D multicomponent diffusion sim-
ulation in garnet using finite differences. This package takes advantage 
of the Julia programming language and GPU acceleration to produce ef-
ficient simulations. Furthermore, we introduce the use of time-stepping 
algorithms called stabilised explicit Runge–Kutta methods and demon-
strate the efficiency of stabilised explicit methods for this type of 
problem. The simulations also highlight the potential role of matrix 
connectivity in modifying garnet composition during diffusion. This 
paves the way for a better understanding of garnet-matrix interactions 
in the case of complex scenarios and different garnet geometries.

2. Governing equations

The theoretical framework for multicomponent diffusion used in 
this study is an extension of Fick’s Second law (Onsager, 1945; Fick, 
1855), incorporating the reciprocal relationships of non-equilibrium 
thermodynamics (Onsager, 1931a,b) and assuming spatially uniform 
temperature and pressure conditions (Lasaga, 1979). For garnet, four 
different components are considered here, corresponding to the pri-
mary endmembers of the garnet solid solution: Mg, Fe, Mn, and Ca. 
Using the electroneutrality condition, the system of equations can be 
formulated as a set of 𝑝 − 1 coupled non-linear parabolic partial dif-
ferential equations (PDEs), where 𝑝 is the number of components, here 
equal to four (Lasaga, 1979). This can be written, for one component 
𝑖, in Cartesian coordinates, as: 
𝜕𝐶𝑖
𝜕𝑡

= ⃖⃖⃗∇ ⋅
𝑝−1
∑

𝑗=1
𝐷𝑖𝑗 ⃖⃖⃗∇𝐶𝑗 , (1)

where 𝐶𝑖 is the molar fraction of the 𝑖th component in the compo-
sitional vector ⃖⃖⃗𝐶 and 𝐷𝑖𝑗 is a component of the (𝑝 − 1) × (𝑝 − 1)
interdiffusion coefficient matrix 𝐃 (m2 s−1), 𝑡 is the time (s) and ⃖ ⃖⃗∇ is the 
differential operator (m−1). The fixed component is defined here as Ca. 
2 
Note that the use of molar fraction supposes a constant molar volume 
in garnet (e.g. Lasaga, 1983).

The components of 𝐃 can be approximated, under the assumption 
of ideal behaviour for equally charged cation diffusion in a silicate 
framework, as: 

𝐷𝑖𝑗 = 𝐷∗
𝑖 𝛿𝑖𝑗 −

𝐶𝑖𝐷∗
𝑖

∑𝑝
𝑘=1 𝐶𝑘𝐷∗

𝑘

(𝐷∗
𝑗 −𝐷∗

𝑛), (2)

with 𝐷∗
𝑖  the tracer diffusion coefficient (m2 s−1) of the 𝑖th component, 

𝛿𝑖𝑗 the Kronecker delta, and 𝐷∗
𝑝 the tracer diffusion coefficient of the 

dependent component (here Ca) (Lasaga, 1979).
To obtain a closed system, an expression for 𝐷∗

𝑖  is needed and can 
be obtained experimentally, assuming an Arrhenius relationship with a 
temperature and pressure dependency: 

𝐷∗
𝑖 = 𝐷0,𝑖 exp

(

−
𝐸𝑎𝑖 − (𝑃 − 𝑃0)𝛥𝑉 +

𝑖
𝑅𝑇

)

, (3)

with 𝐷0,𝑖 the pre-exponential constant (m2 s−1), 𝐸𝑎𝑖 the activation 
energy of diffusion (J mol−1), 𝛥𝑉 +

𝑖  the activation volume of diffusion 
(m3 mol−1) for the 𝑖 component and 𝑃0 the pressure of calibration (Pa), 
𝑅 the universal gas constant (kg m2 s−2 K−1 mol−1), 𝑇  the temperature 
(K) and 𝑃  the pressure (Pa) of interest.

Eq.  (1) can be solved numerically with Eqs. (2) and (3), if appro-
priate boundary and initial conditions are defined. The ones used in 
this study in the case of the 3D models are described in the following 
section.

3. Methods

3.1. Analytical methods and post-processing

In order to use realistic garnet morphologies for the 3D numerical 
models, two natural garnet porphyroblasts of similar size were selected 
to be used as starting geometry. These two grains are amphibolite 
facies garnets from the same metapelitic rock sample from the Val 
Piora locality, Central Alps, Switzerland. The two garnets were hand-
picked in the field and selected to have two different end-members: a 
well-shaped, euhedral garnet grain, hereafter referred as the euhedral 
garnet, and a deformed sub-euhedral poikiloblastic garnet grain, here-
after referred as the sub-euhedral garnet. Each individual grain was 
then imaged in 3D at high resolution (∼5 μm voxel size) using µCT 
with a BRUKER SkyScan 1273 3D X-ray microscope at the Institute of 
Geological Sciences, University of Bern. A micro-focus X-ray tube with 
an acceleration voltage of 100 kV and a beam current of 80 μA was 
used as the source. The X-ray beam was filtered using a 2.0 mm Cu 
plate. The exposure time of the CCD detector was set to 271 ms, and 
averaging of 10 frames was used for noise reduction. The sample was 
rotated stepwise by 0.15◦ in the beam cone. The resulting tomography 
data were reconstructed using the NRecon software with corrections 
for beam hardening and misalignment artifacts. Finally, the data was 
imported into the Dragonfly software (Gendron et al., 2021) to segment 
the garnet grains from their inclusions and the matrix. The data was 
segmented using intensity thresholds and a region of interest (ROI) 
was created for the largest 6-connected garnet domain for each grain. 
This ROI was then downsampled in Dragonfly to resolutions of 7683, 
5643 and 2563 to be used in the 3D numerical models. Since the initial 
domains of the two scans are not cubic but slightly shorter in the 𝑧-
direction, this resulted in a regular grid with cuboids shorter in the 
𝑧-axis rather than voxels. These ROIs were then exported as 3D binary 
matrices.

3.2. Initial and boundary conditions

To define the initial and boundary conditions to solve for Eq. (1), 
additional steps are required:  assigning a composition to each cuboid in 
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Fig. 1. Initial composition of the garnet composition used for interpolation in 3D. This 
is a core to rim profile obtained from compositional maps using XMapTools (see text). 
The composition at the rim is assumed to represent the equilibrium garnet composition 
at peak conditions and was applied as the boundary condition in contact with the 
matrix.

the garnet domain (ΩGrt), locating the boundaries of ΩGrt, and setting 
the boundary conditions. These steps were performed using the Julia 
programming language (Bezanson et al., 2017) and are described in 
the following.

The conversion of garnet density from µCT data directly to com-
position was not possible due to the small density variations and the 
lack of a suitable density calibration. Furthermore, since the goal of 
this study was to investigate the effects of chemical diffusion in the 
context of 3D geometries, it was important to have similar initial 
chemical conditions for both grains. To achieve this, a 3D composition 
was numerically generated from natural data and mapped onto the 3D 
garnet grain geometries. To do so, a high resolution chemical profile 
was obtained from quantitative compositional maps using the strip 
tool implemented in XMapTools (Lanari et al., 2019, 2014; Lanari and 
Tedeschi, 2025), and interpolated in 3D over the grains assuming an 
ellipsoid shape. The initial chemical profile used is shown in Fig.  1 
and is from an almandine rich blueschist facies garnet from a mafic 
sample of Cazadero, Franciscan Complex, USA (Sample AUS in Cesare 
et al., 2019). This profile was chosen because it is showing prominent 
and sharp zoning, with a composition typical of a low-𝑇  garnet (see 
Supplementary Material S1 for the chemical zoning on the original 
garnet). The ellipsoid shape is a reasonable assumption, as euhedral 
garnets are often approximated as spheres (e.g. Gaidies et al., 2008; 
Faryad and Ježek, 2019), and a deformed sphere can be described as 
an ellipsoid in the case of pure and simple shear deformation.
3 
To define the best fitting ellipsoid for each garnet grain, three pa-
rameters were required: the principal axes’ directions and magnitudes, 
as well as the ellipsoid centre. The centre of each ellipsoid was assumed 
to be the centre of mass of ΩGrt and the inclusion domain (ΩI, defined 
later in this section), and the main axes of the inertia tensor (𝐈) were 
used as principal directions for the ellipsoid axes. The centre of mass 
was calculated in the discrete space, assuming a constant density for 
ΩGrt, according to the equation: 

⃖⃖⃖⃖⃗𝑐𝑚 = 1
𝐺

⋅
𝐺
∑

𝑘=1
⃖⃖⃖⃗𝑣𝑘, (4)

where ⃖⃖⃖⃖⃗𝑐𝑚 is the centre of mass, 𝐺 is the total number of garnet grid 
point, and ⃖⃖⃗𝑣𝑙 is the position vector of each 𝑘 garnet grid point. The 
expression is valid for grid point of constant size. Using ⃖ ⃖⃖⃖⃗𝑐𝑚 as the origin 
of a new coordinate system, 𝐈 can be calculated (e.g. Hand and Finch, 
1998, p. 286): 

𝐈 = 𝑚 ⋅

⎡

⎢

⎢

⎢

⎣

∑𝑁
𝑙=1(𝑦

′2
𝑙 + 𝑧′2𝑙 ) −

∑𝑁
𝑙=1 𝑥

′
𝑙𝑦

′
𝑙 −

∑𝑁
𝑙=1 𝑥

′
𝑙𝑧

′
𝑙

−
∑𝑁

𝑙=1 𝑥
′
𝑙𝑦

′
𝑙

∑𝑁
𝑙=1(𝑥

′2
𝑙 + 𝑧′2𝑙 ) −

∑𝑁
𝑙=1 𝑦

′
𝑙𝑧

′
𝑙

−
∑𝑁

𝑙=1 𝑥
′
𝑙𝑧

′
𝑙 −

∑𝑁
𝑙=1 𝑦

′
𝑙𝑧

′
𝑙

∑𝑁
𝑙=1(𝑥

′2
𝑙 + 𝑦′2𝑙 )

⎤

⎥

⎥

⎥

⎦

, (5)

where 𝑥′, 𝑦′ and 𝑧′ are the 3D Cartesian coordinates in a reference 
frame with ⃖⃖⃖⃖⃗𝑐𝑚 as the origin and 𝑚 is the mass of the object, here set 
to 1. The directions of the eigenvectors of 𝐈 correspond to the principal 
axes of inertia, and are used to define the direction of the major axes 
of the ellipsoid for each garnet domain. To obtain the magnitude of 
each axis that would best fit the ellipsoid to the garnet domain shape, 
an iterative approach was used. An initial ellipsoid was defined with 
axis magnitudes deliberately smaller than those of the garnet domain of 
interest. For each garnet grid point located outside of this ellipsoid, the 
major axis closest in angle to the garnet grid point was increased by 1% 
until all garnet grid points were located inside the ellipsoid. From this 
ellipsoid, the original chemical profile was then scaled to the ellipsoid 
shape, and the composition for each garnet grid point was determined 
by linear interpolation from it. The initial compositions for the euhedral 
and sub-euhedral grains are shown in Figs.  2 and 3, respectively.

Concerning the boundary conditions of ΩGrt, two different types 
were defined for both garnet grain geometries:

• Matrix boundary (𝜕Ω𝑀
Grt), the interface where ΩGrt is in contact 

with the surrounding matrix domain (Ω𝑀 ), which is an open 
domain encompassing ΩGrt

• Inclusion boundary (𝜕Ω𝐼
Grt), the interface where the garnet is in 

contact with inclusions (Ω𝐼 ), representing closed sub-domains 
within ΩGrt

Additionally, from the sub-euhedral grain geometry, a second model 
referred as the isolated matrix model was defined, with an additional 
boundary associated with a third domain:

• Internal matrix boundary (𝜕Ω𝑀⋐Grt
Grt ): the boundary between the 

garnet grain and a connected matrix domain contained inside the 
sub-euhedral garnet grain (Ω𝑀⋐Grt)

To properly locate 𝜕Ω𝑀
Grt, 𝜕Ω𝐼

Grt and 𝜕Ω𝑀⋐Grt
Grt , it was first required 

to define Ω𝐼 , Ω𝑀  and Ω𝑀⋐Grt from the ROIs, as only ΩGrt is repre-
sented in the original binary 3D matrix data. A flood fill algorithm 
was implemented in 3D and used to define Ω𝑀  (e.g. Newman and 
Sproull, 1979, p. 253). The inclusion domain was then defined from 
the remaining, unclassified regions. For Ω𝑀⋐Grt in the isolated matrix 
model, the same ellipsoid used for defining the initial conditions was 
used to replace Ω𝑀  contained inside the ellipsoid by Ω𝑀⋐Grt. This 
new domain was then eroded in contact to Ω𝑀  until it was visually 
contained inside ΩGrt. This step was normalised by the number of pixels 
so that similar results could be obtained at different resolutions. This 
approach allowed Ω  to have a  similar shape relative to the sub-
𝑀⋐Grt
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Fig. 2. Initial conditions for the 3D euhedral garnet geometry, with the inclusion domain shown in green. The resolution shown is 7683. The size of the domain is 10.4 × 10.4 × 7.8
mm. A quarter of the grain is removed for visualisation. (A) Fe composition. (B) Ca composition. (C) Mg composition. (D) Mn composition. All compositions are obtained from 
interpolating a measured profile (see Fig.  1) onto a fitted ellipsoid.
euhedral grain geometry. The different domains for the three model 
setups are shown in Fig.  4.

The boundaries 𝜕Ω𝑀
Grt, 𝜕Ω𝐼

Grt and 𝜕Ω𝑀⋐Grt
Grt  were finally obtained 

by finding and mapping the intersections between ΩGrt and Ω𝑀 , ΩGrt
and Ω𝐼  and ΩGrt and Ω𝑀⋐Grt, respectively. Two different boundary 
conditions were defined. For 𝜕Ω𝑀

Grt, a Dirichlet boundary condition was 
enforced, with the composition fixed to ⃖⃖⃖⃖⃖⃖⃗𝐶eq, the composition vector 
of the garnet composition in equilibrium with the matrix. For 𝜕Ω𝐼

Grt, 
a homogeneous Neumann boundary condition was applied, implying 
no chemical exchange between the inclusions and the garnet. For 
𝜕Ω𝑀⋐Grt

Grt  in the second model of the sub-euhedral grain, a homogeneous 
Neumann boundary condition was similarly applied.
4 
This can be formulated in 3D in mathematical notation as: 
𝜕⃖⃖⃗𝐶
𝜕𝑥

|

|

| ⃖⃗𝑋∈𝜕Ω𝐼Grt
= 𝜕⃖⃖⃗𝐶

𝜕𝑥
|

|

| ⃖⃗𝑋∈𝜕Ω𝑀⋐Grt
Grt

= 0, for ⃖⃖⃗𝑋 ± ⃖⃗𝑒1 ∈ Ω𝐼 , or 
⃖⃖⃗𝑋 ± ⃖⃗𝑒1 ∈ Ω𝑀⋐Grt,

𝜕⃖⃖⃗𝐶
𝜕𝑦

|

|

| ⃖⃗𝑋∈𝜕Ω𝐼Grt
= 𝜕⃖⃖⃗𝐶

𝜕𝑦
|

|

| ⃖⃗𝑋∈𝜕Ω𝑀⋐Grt
Grt

= 0, for ⃖⃖⃗𝑋 ± ⃖⃗𝑒2 ∈ Ω𝐼 , or 
⃖⃖⃗𝑋 ± ⃖⃗𝑒2 ∈ Ω𝑀⋐Grt,

𝜕⃖⃖⃗𝐶
𝜕𝑧

|

|

| ⃖⃗𝑋∈𝜕Ω𝐼Grt
= 𝜕⃖⃖⃗𝐶

𝜕𝑧
|

|

| ⃖⃗𝑋∈𝜕Ω𝑀⋐Grt
𝐺

= 0, for ⃖⃖⃗𝑋 ± ⃖⃗𝑒3 ∈ Ω𝐼 , or 
⃖⃖⃗𝑋 ± ⃖⃗𝑒3 ∈ Ω𝑀⋐Grt,

⃖⃖⃗𝐶|

| = ⃖⃖⃖⃖⃖⃖⃗𝐶eq, for ⃖⃖⃗𝑋 ± ⃖⃗𝑒𝑚 ∈ Ω𝑀 , 𝑚 ∈ {1, 2, 3},

(6)
| ⃖⃗𝑋∈𝜕Ω𝑀Grt
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Fig. 3. Initial conditions for the 3D sub-euhedral garnet geometry, with the inclusion domain shown in green. The resolution shown is 7683. The size of the domain is 11.4×11.4×7.6
mm. A quarter of the grain is removed for visualisation. (A) Fe composition. (B) Ca composition. (C) Mg composition. (D) Mn composition. All compositions are obtained from 
interpolating a measured profile (see Fig.  1) onto a fitted ellipsoid.
where 𝑥, 𝑦, 𝑧 are the Cartesian coordinates, ⃖⃖⃗𝑋 is the position vector of 
grid points in the computational domain and ⃖⃗𝑒𝑚 are the Cartesian unit 
basis vectors in the 𝑚th direction.

The petrological rationale for defining ⃖⃖⃗𝐶 at Ω𝑀
Grt is that the ma-

trix and garnet boundaries remain in local equilibrium over diffusion 
timescales. For ⃖⃖⃗𝐶 at Ω𝐼

Grt, this implies that the inclusion phases either 
(i) do not contain Mg, Fe, Mn, or Ca, such as quartz, or (ii) have sig-
nificantly lower diffusion rates for these elements compared to garnet, 
preventing any exchange between ΩGrt and Ω𝐼  within the timescales of 
interest. This is a similar reasoning concerning ⃖⃖⃗𝐶 at 𝜕Ω𝑀⋐Grt, where 
𝐺

5 
Ω𝑀⋐Grt is considered to have a low connectivity, preventing good 
exchange and local equilibrium with the outside matrix.

3.3. Non-dimensionalisation and numerical approach

Using Eqs. (1), (2), (3), (6) and the initial conditions, the system 
of PDEs can be numerically solved. To mitigate numerical errors and
insuring better convergence, the system was first non-dimensionalised. 
As the compositions are already dimensionless, only time and space 
need special treatment. Taking the characteristic length (𝐿̃) as the 
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Fig. 4. Central sections of the garnet grains showing the domains distribution for the 
three model setups. The resolution shown is 7683. (A) Euhedral garnet model (EGM). 
(B) Open garnet model (OGM). (C) Isolated Matrix Model (IMM), derived from the 
same geometry as OGM. The left panels show sections normal to the 𝑧-axis, while the 
right panels show sections normal to the 𝑥-axis. The notations Ω𝐼 , ΩGrt, Ω𝑀 and Ω𝑀⋐Grt
refer to the inclusion domain, the garnet domain, the matrix domain, and the isolated 
matrix domain, respectively.

length of the domain in the 𝑥-axis (𝐿𝑥), and the characteristic dif-
fusion 𝐷̃ as the mean of the initial tracer diffusion coefficients, the 
characteristic variables can be defined as: 

𝐿̃ = 𝐿𝑥,

𝐷̃ =
𝐷∗
Mg +𝐷∗

Fe +𝐷∗
Mn +𝐷∗

Ca

4
,

𝐃̃ = 𝐃
𝐷̃
,

𝑡 = 𝐿̃2

𝐷̃
,

(7)

where 𝐃̃ is the dimensionless interdiffusion coefficient matrix and 𝑡 is 
the characteristic time (s). Using Eq. (1) and the scaling variables for 
all 𝑝 − 1 components, we obtain: 
𝜕𝐶Mg
𝜕𝑡

= ̃⃖⃗⃖∇ ⋅ 𝐷̃MgMg
̃⃖⃗⃖∇𝐶Mg +

̃⃖⃗⃖∇ ⋅ 𝐷̃MgFe
̃⃖⃗⃖∇𝐶Fe +

̃⃖⃗⃖∇ ⋅ 𝐷̃MgMn
̃⃖⃗⃖∇𝐶Mn,

𝜕𝐶Fe
𝜕𝑡

= ̃⃖⃗⃖∇ ⋅ 𝐷̃FeMg
̃⃖⃗⃖∇𝐶Mg +

̃⃖⃗⃖∇ ⋅ 𝐷̃FeFe
̃⃖⃗⃖∇𝐶Fe +

̃⃖⃗⃖∇ ⋅ 𝐷̃FeMn
̃⃖⃗⃖∇𝐶Mn,

𝜕𝐶Mn
𝜕𝑡

= ̃⃖⃗⃖∇ ⋅ 𝐷̃MnMg
̃⃖⃗⃖∇𝐶Mg +

̃⃖⃗⃖∇ ⋅ 𝐷̃MnFe
̃⃖⃗⃖∇𝐶Fe +

̃⃖⃗⃖∇ ⋅ 𝐷̃MnMn
̃⃖⃗⃖∇𝐶Mn,

(8)

with ̃⃖⃗⃖∇ = 1
𝐿̃
⃖⃖⃗∇.

As this system is composed of stiff non-linear coupled PDEs, it is 
not trivial to solve numerically at high resolution in 3D efficiently. For 
that reason, a Julia package, DiffusionGarnet.jl (Dominguez, 2023), was 
developed. Designed for high performance, it leverages Julia’s package 
ecosystem and supports parallel computing on both CPUs and GPUs. 
6 
The package also allows performing multicomponent major element 
diffusion in garnet in spherical, 1D and 2D Cartesian coordinates.

The numerical approach used in DiffusionGarnet.jl to solve Eq. (8) 
is based on the method of lines (e.g. Schiesser, 2012). In this ap-
proach, the system of PDEs is first discretised in space to form a semi-
discretised form composed of ordinary differential equations (ODEs). 
This form is then solved over time using standard, well-established ODE 
solvers. In DiffusionGarnet.jl, spatial discretisation is performed using 
conservative finite differences.

While FEM offers advantages in handling complex geometries (e.g. 
Wu et al., 2025), the use of finite differences in this study is motivated 
by two main considerations. Firstly, one of the primary goal is to 
achieve high performance in 3D simulations using GPU acceleration. 
The finite element method typically involves mesh assembly and more 
complex data structures, which hinder efficient GPU implementation 
due to non-local memory access and communication overheads be-
tween the CPU and GPU. In contrast, finite differences map naturally 
onto regular grids, enabling efficient memory access patterns and par-
allelism on modern GPU architectures. Secondly, the garnet geometries 
used in this study are derived from µCT scans and are therefore voxel-
based by nature. These voxel models can be used directly on a regular 
grid, eliminating the need for remeshing, a computationally expensive 
step in 3D that introduces additional complexity. Given these factors, 
finite differences provide a practical and efficient solution in this 
context.

Since the system consists of three parabolic PDEs, the spatial dis-
cretisation process leads to a system of 3 × 𝑁 ODEs, where 𝑁 is the 
number of grid points. Temporal discretisation is then handled using a 
stabilised explicit Runge–Kutta method. This family of time-stepping 
algorithms was specifically developed for solving large systems of 
mildly stiff parabolic PDEs (Sommeijer et al., 1998; Van Der Houwen 
and Sommeijer, 1980). These solvers extend the stability domain of 
standard explicit methods, which is bounded by the classical Courant–
Friedrich–Lewy (CFL) condition (Courant et al., 1928). As a result, 
timestep (𝛥𝑡) can approach those of implicit methods without the 
computational cost of constructing and solving a linear (and possibly 
non-linear) system at each 𝛥𝑡. Furthermore, because these are explicit 
methods, they are inherently well-suited for parallelisation, as they 
involve matrix-free operations. Finally, stabilised explicit solvers have 
a workload that scales theoretically linearly with numerical resolution 
𝛥𝑥 (i.e. (𝑛) in big O notation) (e.g. Abdulle et al., 2022). This contrasts 
with standard explicit methods, where the number of timesteps scales 
almost quadratically due to the CFL condition ((𝑛1+2∕𝑑 ), with 𝑑 the 
number of dimensions, in this case 3). This makes them particularly 
effective for high-resolution, large-scale models (e.g. Dumont et al., 
2013). A common step of stabilised explicit methods is the use of inter-
nal stages using shifted Chebyshev polynomials to extend the domain 
of stability of the numerical solution in the negative real axis (Hairer 
and Wanner, 1996, pp. 31–36). The interested reader can refer to 
Abdulle (2015) for a comprehensive introduction on stabilised explicit 
methods. Different solvers have been proposed and differ in the way 
the polynomials or the Runge–Kutta steps are constructed. To evaluate 
the performance of some of them for multicomponent diffusion, five 
different stabilised explicit methods were tested at varying resolutions: 
RKC, SERK2v2, ROCK2, ROCK4 and ESERK5 (Sommeijer et al., 1998; 
Kleefeld and Martín-Vaquero, 2013; Abdulle and Medovikov, 2001; 
Abdulle, 2002; Martín-Vaquero and Kleefeld, 2019). The solvers RKC, 
SERK2v2, and ROCK2 are second order methods, whereas ROCK4 and 
ESERK5 are fourth and fifth order methods, respectively. In addi-
tion, to better estimate their performance against more conventional 
time-stepping methods, an explicit second order Runge–Kutta (RK2) 
method using an embedded Euler method for adaptive time stepping 
was also used (e.g. Hairer et al., 1993, pp. 132–133). The speci-
ficity and details of the implementation of each method is beyond 
the scope of this study, but the interested reader can refer to the 
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Table 1
Summary of the parameters used in the numerical models: Euhedral Garnet Model 
(EGM), Open Garnet Model (OGM), and Isolated Matrix Model (IMM). Both OGM and 
IMM have the same grain geometry.
 Parameter Symbol EGM OGM IMM  
 Pressure condition 𝑃 0.7 GPa 0.7 GPa 0.7 GPa  
 Temperature condition 𝑇 700 ◦C 700 ◦C 700 ◦C  
 Total time 𝑡 10 Myr 10 Myr 10 Myr  
 Total length in 𝑥 and 𝑦 𝐿𝑥 10.4 mm 11.4 mm 11.4 mm 
 Total length in 𝑧 𝐿𝑧 7.8 mm 7.6 mm 7.6 mm  
 Internal matrix domain Ω𝑀⋐Grt No No Yes  

original works for more details. These solvers are implemented in the 
DifferentialEquations.jl package (Rackauckas and Nie, 2017), an ODE 
solver ecosystem. This provides a way to compare ODE solvers with 
consistent implementations between the different algorithms.

Additionally, spatial discretisation is handled with ParallelSten-
cil.jl (Omlin and Räss, 2022), which allows to write architecture-
agnostic code compatible for efficient parallelisation on both CPUs 
and GPUs. As such, models in DiffusionGarnet.jl can be performed 
on CPUs or GPUs with minimal modification of the code. Finally, 
Unitful.jl (Keller and Contributors, 2025) is used for units handling 
and GeoParams.jl (Kaus et al., 2025) for calculating the tracer diffusion 
coefficients.

All models were performed on an NVIDIA GH200 Grace Hopper 
Superchip at the Johannes Gutenberg University, Mainz, using single-
precision floating-point arithmetic (float32). This superchip contains 
96 GB of GPU memory (GRAM) along with 480 GB of RAM. It was 
also used to compare models at different resolutions running only on 
CPU or with GPU acceleration. Concerning the simulations involving 
GPU acceleration, all relevant data structures, such as initial conditions, 
diffusion coefficients, and caches from the numerical solvers were 
directly allocated at the beginning of the simulation in GPU memory 
using Compute Unified Device Architecture (CUDA) arrays (Besard 
et al., 2018). The numerical operations, including spatial discretisation 
and time stepping stages, were then performed on the GPU, using 
GPU kernels. This ensured that both data storage and computations 
remained on the GPU, minimising memory transfer overhead between 
the CPU and GPU.

The visualisations were generated using the Julia package Makie.jl
(Danisch and Krumbiegel, 2021) for 1D and 2D views, while Par-
aView (Ahrens et al., 2005) was used for 3D representations.

4. Results and discussion

Three different model configurations were defined and used: the 
euhedral garnet model (EGM), the open garnet model (OGM), and the 
isolated matrix model (IMM). Both OGM and IMM share the same 
garnet geometry, corresponding to the sub-euhedral garnet grain. How-
ever, IMM includes Ω𝑀⋐Grt as a domain. The chosen 𝑃–𝑇 –𝑡 conditions 
for all models are 700 ◦C and 0.8 GPa, held constant over 10 Myr, 
which correspond to upper amphibolite conditions during Barrovian-
like regional metamorphism. The 𝐷∗

𝑖  values used for Mg, Fe and Mn 
are from Chakraborty and Ganguly (1992), and the tracer diffusion 
coefficient of Ca is fixed to 0.5×𝐷∗

Fe, following the approach of Loomis 
et al. (1985). The principal parameters and characteristics of the models 
are summarised in Table  1.

4.1. Performance of the numerical models and evaluation of the stabilised 
explicit methods

Efficient performance in 3D numerical models is essential for ex-
ploring multiple geological scenarios, systematics, and performing in-
verse modelling tasks such as diffusion chronometry. These applications
7 
Fig. 5. Total run time of the euhedral garnet model (EGM) and the open garnet 
model (OGM) at three different resolutions in 3D: 2563, 5123 and 7683. Each colour 
corresponds to a different explicit solver used for the simulation. The solvers ROCK2, 
SERK2v2, ROCK4 and ESERK5 (Abdulle and Medovikov, 2001; Kleefeld and Martín-
Vaquero, 2013; Abdulle, 2002; Martín-Vaquero and Kleefeld, 2019) are all stabilised 
explicit methods whereas the standard explicit second order Runge–Kutta method (RK2) 
is used as a reference model. Each simulation was performed both with and without 
GPU acceleration and utilising 72 CPU threads. At the resolution of 7683, only ROCK2 
and RK2 methods were able to fit the GRAM of the GPU. For total run-time below 
10 min, the models were run twice for each run, to exclude the precompilation time. 
Above this threshold, the precompilation time was considered negligible with respect to 
the total run-time. The dark dotted lines represent the theoretical algorithmic scalings 
of explicit and stabilised explicit methods for parabolic equations in 3D. All models 
were performed on an NVIDIA GH200 Grace Hopper Superchip using single-precision 
floating-point arithmetic (float32), OrdinaryDiffEqStabilizedRK 1.1.0, and Julia version 
1.11.2.

often require running large numbers of forward models to explore the 
parameter space or quantify uncertainty (e.g. Mutch et al., 2021; Shea 
et al., 2015). Consequently, the development and implementation of 
computationally efficient numerical methods is needed.

As such, it is relevant to evaluate the performance of the five 
different stabilised explicit methods (RKC, SERK2v2, ROCK2, ROCK4 
and ESERK5) compared to more conventional time-stepping algorithms, 
such as RK2. To do so, EGM and OGM were performed at three different 
resolutions: 7683, 5643 and 2563 for each method. Each simulation was 
performed both with and without GPU acceleration and utilising 72 
CPU threads. This was done to assess how garnet geometry influences 
computational performance. Due to GRAM limitations, only the 5643
and 2563 resolutions were tested across all methods on GPU. At 7683, 
only RK2, ROCK2 and RKC could fit in memory. Furthermore, the 
RKC method did not converge above the resolution of 2563 and was 
therefore discarded. As a consequence, its results are not reported in the 
following. The performance results are presented in Fig.  5. The results 
indicate that GPU acceleration consistently enhances computational 
speed, achieving a 20- to 30-fold speedup across all algorithms com-
pared to the CPU-only approach. Among the tested methods, ROCK2 
demonstrated the best overall performance for both models, highlight-
ing its robustness. Compared to the standard explicit method RK2, 
all algorithms perform better at the highest resolution in the CPU-
only approach and show a better algorithmic scaling. However, the 
ROCK2 algorithm is the only one to show a scaling close to (𝑛). 
Notably, with GPU acceleration at a resolution of 7683, ROCK2 also 
achieved remarkable short total runtimes of just 115 s for EGM and 
172 s for OGM, which is about an order of magnitude faster than 
with RK2. Furthermore, ROCK2 has lower memory requirements than 
SERK2v2, ROCK4 and ESERK5, making it an even more suitable choice 
in memory-constrained scenarios.
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Fig. 6. Final timestep after 10 Myr of the euhedral garnet geometry model (EGM). A quarter of the grain is removed for visualisation. Temperature and pressure remain constant 
at 700 ◦C and 0.8 GPa. (A) Fe composition (B) Ca composition (C) Mg composition (D) Mn composition. The resolution is 7683.
4.2. Comparison of the numerical models

Concerning the evolution of the garnet compositions for EGM, OGM, 
and IMM, the final state in 3D of each model for each element is 
shown in Fig.  6 (EGM), and Figs.  7 and 8 (OGM and IMM). To analyse 
composition evolution over time, central sections normal to the 𝑧-axis 
of all models for all elements are shown in Figs.  9 (Fe), 10 (Ca), 11 
(Mg) and 12 (Mn). Finally, a 1D core-rim profile along the 𝑥-axis is 
shown for each model in Fig.  13. Additionally, time-lapse 3D videos for 
each model are available in the supplementary material of this article 
(Supplementary Material S2, S3, S4, S5, S6, S7, S8, S9, S10, S11).
8 
Comparing the results of the three models highlights some impor-
tant differences that reflect the variation in geometries and boundary 
conditions. After 10 Myr, EGM retains lots of the features from its 
original zoning (for instance with Ca and Fe in Figs.  6, 10A, 9A and 
13A). This preservation is due to the absence of pathways connecting 
the matrix to the interior of the garnet, as the grain lacks fracturing 
or large inclusions in contact with the matrix. Consequently, strong 
gradients are only present from the original garnet composition rather 
than being induced by boundary conditions in the core and mantle 
of the grain, significantly limiting diffusion. In contrast, OGM shows 



H. Dominguez et al. Computers and Geosciences 206 (2026) 106023 
Fig. 7. Final timestep after 10 Myr for Fe (top) in (A) the open garnet model (OGM) and (B) the isolated matrix model (IMM), and for Ca (bottom) in (C) OGM and (D) IMM. A 
quarter of the grain is removed for visualisation. Temperature and pressure remain constant at 700 ◦C and 0.8 GPa. The initial setups from the two models differ only by their 
boundary conditions: the composition in the garnet is fixed to ⃖ ⃖⃖⃖⃖⃖⃗𝐶eq in contact with all the matrix (𝜕Ω𝑀

Grt) in DMG. In contrast, in IMM, the garnet does not exchange chemically 
with the matrix near the core. The resolution is 7683 for both models.
strong connectivity between the inside of the garnet and the surround-
ing matrix (Fig.  4B). As a result, equilibration occurs rapidly, erasing 
most of the original compositional features within just 1 Myr (see for 
instance Fe and Mg content in Figs.  9B, 11B and 13B). Patchy zoning 
persists only in areas where the matrix has limited contact with the 
garnet, as seen for Ca and Mg in the outer rim of the grain (Figs.  7C 
and 8A). For Mn, the fastest diffusing element, the zoning is completely 
erased (Figs.  12B and 8C). Concerning IMM, it shows an intermediate 
result between EGM and OGM, with slow diffusion in the core, and fast 
diffusion in the mantle and in the rim of the grain (Fig.  13C). Moreover, 
remnants of the original zoning are preserved only in the region in 
9 
contact with Ω𝑀⋐Grt
Grt  (Figs.  4C), resulting in patchy zoning patterns that 

deviate from the original concentric structure of the compositions, as 
seen for Fe and Ca (Figs.  7B, 9C, 7D and 10C). The Mn core is also 
preserved, contrary to OGM (Figs.  8C and D, and 12B and C).

4.3. Uphill diffusion

Another remarkable feature of the models is the occurrence of 
prominent uphill diffusion, in particular for Fe in OGM (Figs.  9B at 
0.1 and 1.0 Myr and 13B in the whole profile) and IMM (Figs.  9B at 
0.1 and 1.0 Myr and 13C, especially at the distances from the core 
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Fig. 8. Final timestep after 10 Myr for Mg (top) in (A) the open garnet model (OGM) and (B) the isolated matrix model (IMM), and for Mn (bottom) in (C) OGM and (D) IMM. 
A quarter of the grain is removed for visualisation. Temperature and pressure remain constant at 700 ◦C and 0.8 GPa. The initial setups from the two models differ only by their 
boundary conditions: the composition in the garnet is fixed to ⃖ ⃖⃖⃖⃖⃖⃗𝐶eq in contact with all the matrix (𝜕Ω𝑀

Grt) in DMG. In contrast, in IMM, the garnet does not exchange chemically 
with the matrix near the core. The resolution is 7683 for both models.
from 2 to 2.5 mm). Uphill diffusion is a phenomenon predicted in 
multicomponent diffusion systems, when an element diffuses against its 
composition gradient (Onsager, 1945; Darken, 1948; Ganguly, 2010). 
Mathematically, uphill diffusion for an element 𝑥 is more likely to occur 
when the values of its off-diagonal terms in the interdiffusion coeffi-
cient matrix (𝐷𝑖=𝑥,𝑗≠𝑥) are in the same or higher order of magnitude 
compared to its diagonal term (𝐷𝑖=𝑥,𝑗=𝑥). This is likely the case for 
the 𝐷FeMn term in both OGM and IMM, given the rapid decrease in 
Mn, which is influenced by the enforced boundary condition at the 
matrix-garnet interface. This is supported by the strong correlation 
between the observed uphill diffusion of Fe and the corresponding 
10 
reduction in Mn content (Fig.  13B and C). While uphill diffusion has 
been observed both numerically and experimentally in garnet (Vielzeuf 
and Saúl, 2011; Ganguly, 2002), there has been no conclusive evidence 
of uphill diffusion in natural garnet samples, with only few potential 
candidates (e.g. Carlson, 2006; Raimbourg et al., 2007). This arises 
from two key challenges: distinguishing between growth zoning and 
diffusion in natural samples, and reconstructing the initial conditions 
in a diffusion-dominated system, where multiple different initial states 
can evolve into the same final composition due to the multicompo-
nent nature of the diffusion. This means that if present, the results 
of uphill diffusion are hard to assess with certainty. The numerical 
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Fig. 9. Evolution through time in 2D of the Fe composition of the three models: (A) euhedral garnet model (EGM), (B) open garnet model (OGM), and (C) isolated matrix model 
(IMM). The 2D section is a central section normal to the 𝑧-axis. Pressure and temperature are constant and fixed to 0.8 GPa and 700 ◦C. The total resolution of all models is 7683.
models predict that uphill diffusion may be common for complex garnet 
geometries when the initial Mn content is high, due to local equilibrium 
at the interface with the surrounding matrix and the high diffusivity of 
this element in garnet.

4.4. Assumptions, implications, and limitations

The definitions of the boundaries in the models are key assumptions. 
By fixing the composition of the garnet in contact with the matrix, grain 
boundary equilibrium is assumed. This implies that elemental exchange 
between the garnet and surrounding phases occurs faster than intra-
grain diffusion timescales, thus ensuring equilibrium. Whether this 
assumption accurately reflects natural metamorphic systems remains 
an open question (e.g. Carlson et al., 2015; Lanari and Engi, 2017; 
11 
Dempster et al., 2017). If valid, it suggests that matrix interactions with 
the inner part of garnet grains, as demonstrated by OGM, could provide 
an efficient mechanism for replenishing the matrix with elements such 
as Mn. This exchange of elements between intra- and inter-granular 
domains could facilitate the growth of new mineral phases. Similar 
core-matrix interactions have been previously documented on natural 
samples (Konrad-Schmolke et al., 2007). Furthermore, in garnet, com-
plex asymmetrical compositional zonations that deviate from simple 
concentric zoning is a relatively common occurrence in the rock record. 
This has often be linked to diffusion occurring around inclusions or 
because of fast diffusion pathways linked to the matrix (e.g. Lanari 
and Hermann, 2021; Smit et al., 2013; Keller, 2006), supporting what 
the models predict. However, the extent to which such exchange oc-
curs remains to be fully assessed, with significant implications for 
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Fig. 10. Evolution through time in 2D of the Ca composition of the three models: (A) euhedral garnet model (EGM), (B) open garnet model (OGM), and (C) isolated matrix model 
(IMM). The 2D section is a central section normal to the 𝑧-axis. Pressure and temperature are constant and fixed to 0.8 GPa and 700 ◦C. The total resolution of all models is 7683.
the preservation of original zoning and chemical re-equilibration, as 
highlighted by IMM. Finally, in more realistic scenarios, 𝑃–𝑇  conditions 
could change within the modelling timescale. Apart from impacting the 
diffusion processes themselves, an important consequence of this would 
be a change in the composition of the garnet in equilibrium with the 
matrix, as shown by previous studies modelling syn-growth diffusion 
(Caddick et al., 2010; Florence and Spear, 1991; Gaidies et al., 2008; 
Faryad and Ježek, 2019).

The role of inclusions, represented by Ω𝐼 , has been deliberately 
simplified by applying a no-flux boundary on 𝜕Ω𝐼

Grt and treating all in-
clusions as part of a single domain. Many common inclusions in garnet, 
such as quartz, rutile, muscovite, zircon, and aluminosilicates, are not 
involved in major element diffusion due to their structural composition. 
12 
However, other inclusions, such as biotite, ilmenite, or amphibole, can 
exchange chemically with garnet, and their partitioning behaviour has 
been used to estimate cooling rates (Ferry and Spear, 1978; Spear and 
Parrish, 1996; Pownceby et al., 1987; Bento Dos Santos et al., 2014). 
While this study does not consider the complexity of multiple inclusion 
types within a single garnet grain, the numerical framework presented 
here could be extended in future work to investigate their role in garnet 
diffusion. By defining distinct domains for each inclusion type with 
appropriate boundary conditions, this could provide new insights into 
the role of inclusions in garnet diffusion in 3D.

Another simplification in this study is the assumption that the 
initial garnet composition follows an ellipsoidal distribution. Whilst 
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Fig. 11. Evolution through time in 2D of the Mg composition of the three models: (A) euhedral garnet model (EGM), (B) open garnet model (OGM), and (C) isolated matrix 
model (IMM). The 2D section is a central section normal to the 𝑧-axis. Pressure and temperature are constant and fixed to 0.8 GPa and 700 ◦C. The total resolution of all models 
is 7683.
this is reasonable for euhedral to sub-euhedral grains, more com-
plex grain geometries, resulting for example from significant syn- 
to post-growth deformation or resorption, would require alternative
approaches. Extracting composition, at least quantitatively, from µCT 
imaging or others 3D imaging techniques would greatly improve this 
shortcoming. This would allow the exploration of more complex sce-
narios and further improve our understanding of the interplay between 
intra- and intergranular diffusion processes.

Finally, while the current models are based on geologically sound 
assumptions, they lack a systematic exploration of parameter space 
and the incorporation of data-driven constraints. Future developments 
could employ sensitivity analysis to more accurately quantify the 
13 
influence of boundary conditions or use inverse modelling approaches 
to optimise model parameters to fit observed compositional data.
However, this would require suitable natural samples with well-
established constraints, such as 𝑃 –𝑇 –𝑡 paths and initial conditions. This 
would formalise the link between model predictions and observations, 
enabling more robust interpretations of natural garnet zoning and its 
implications for metamorphic processes.

5. Conclusion

This study presents a framework for simulating major element 
diffusion in garnet using realistic 3D grain geometries derived from 
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Fig. 12. Evolution through time in 2D of the Mn composition of the three models: (A) euhedral garnet model (EGM), (B) open garnet model (OGM), and (C) isolated matrix 
model (IMM). The 2D section is a central section normal to the 𝑧-axis. Pressure and temperature are constant and fixed to 0.8 GPa and 700 ◦C. The total resolution of all models 
is 7683.
µCT data. Using a high performance numerical solver with GPU ac-
celeration from the DiffusionGarnet.jl package, we have demonstrated 
the efficiency of stabilised explicit methods, in particular the ROCK2 
solver (Abdulle and Medovikov, 2001), in solving multicomponent 
diffusion equations at high resolution. As stabilised explicit methods 
are suitable for solving large middly-stiff diffusion-dominated parabolic 
PDEs, ROCK2 shows potential to be used for other systems described 
by this kind of equations in Geosciences, such as thermal or erosion 
modelling in 2D or 3D to gain performance and scalability. Further-
more, as those methods are time-stepping methods, they can also be 
used with other popular spatial discretisation methods, such as finite
element.

Comparison of different garnet morphologies highlights the critical 
role of grain geometry and matrix connectivity in controlling diffu-
sion rates and zoning preservation. Our results confirm that diffusion 
14 
in euhedral garnets closely follows predictions based on spherical
assumptions, whereas sub-euhedral garnets with high connectivity 
to the matrix undergo significant compositional re-equilibration. In 
particular, the isolated matrix model also shows that the ability for 
garnet to reach local equilibrium with the surrounding matrix controls 
the preservation or not of the original zoning. Better constraints on 
inter-granular diffusion are therefore important to accurately model 
this process.

These results highlight the importance of considering realistic 3D 
geometries in diffusion studies and support the idea that complex grains 
can only be properly modelled by taking into account all dimensions, as 
connectivity from the matrix, which is critical for diffusion, is impos-
sible to assess from a simple 2D cross-section. Future applications of 
this framework could include the incorporation of additional petrolog-
ical complexities, such as garnet growth, variable matrix composition, 
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Fig. 13. Time evolution of composition during 10 Myr along a 1D core-rim profile following the 𝑥-axis for (A) the euhedral garnet model (EGM), (B) the open garnet model 
(OGM), and (C) the isolated matrix model (IMM). Temperature and pressure remain constant at 700 ◦C and 0.8 GPa. The white stars represent the position where a Dirichlet 
boundary condition is enforced. The initial setups for (B) and (C) differ only by their boundary conditions: the composition in the garnet is fixed to ⃖ ⃖⃖⃖⃖⃖⃗𝐶eq in contact with all the 
matrix (𝜕Ω𝑀

Grt) in DMG. In contrast, in IMM, the garnet does not exchange chemical element with the matrix near the core. The total resolution of the three 3D models is 7683.
complex 𝑃–𝑇 –𝑡 paths and the role of inclusions exchanging chemically 
with garnet.
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