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Introduction

Impact glass beads are significant components of lunar 
soils (Li et al. 2022; Simon et al. 1981). They are formed 
by the rapid quenching of molten droplets generated during 
energetic meteoroid impacts on the lunar surface (Zellner 
2019). As such, impact glass beads preserve valuable infor-
mation about the external forces that have influenced the 
Moon. Previous studies have used lunar impact glass beads 
to explore the impact history of the Earth–Moon system 
through 40Ar/39Ar dating (Culler et al. 2000; Delano et al. 
2007; Levine et al. 2005) and U-(Th)-Pb dating (Long et al. 
2022; Nemchin et al. 2022; Norman et al. 2012, 2019), the 
average composition and evolution of local lunar regolith 
(Delano et al. 1981; Yang et al. 2022; Zellner 2019), and the 
lunar surface water budget (He et al. 2023; Liu et al. 2012; 
Zhou et al. 2024).

Since the impact melting and quenching of individual 
impact glass beads occur over very short timescales, typi-
cally less than one second (Arndt et al. 1984), the majority 
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Abstract
Heterogeneous impact glass beads are abundant in lunar soils and have been extensively used to study the geological 
processes that shaped the Moon’s surface. In this study, we examine the compositional complexity of three heterogeneous 
glass beads containing undigested zirconolite and zircon, using EPMA, Nano-SIMS mapping, and SIMS U–Pb isotope 
analyses. The undigested zircon and zirconolite crystals document three key volcanic events in the lunar history: at ~ 4.31 
Ga the formation of alkali-suite rocks from the highlands, and at ~ 3.92 Ga, and ~ 2.04 Ga mare basalts, indicating that 
the U–Pb system in these zirconium-bearing crystals remains undisturbed during the ultra-high-temperature, short-duration 
impact melting events. EPMA and Nano-SIMS mapping reveal significant compositional inhomogeneity in the glass matri-
ces, which complicates accurate provenance determination based on in-situ analysis. Bulk composition calculated from 
quantitative maps, however, provides a more reliable reference for inferring the origins of these beads. The high propor-
tions of common Pb in the heterogeneous glass matrices, originating from diffusion-controlled processes during partial 
melting of impact involved minerals, introduce substantial uncertainties in U–Pb dating, complicating the interpretation 
of impact event ages. These findings highlight the challenges of U–Pb dating in heterogeneous glass beads and provide 
new insights into the preservation of pristine age information in lunar impact materials.
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(~ 70%) of these beads are heterogeneous (Chao et al. 1970; 
Chen et al. 2023; Norman et al. 2012). These beads contain 
undigested minerals or lithic clasts, indicating incomplete 
melting of the lunar regolith materials involved. Several in-
situ microanalytical technologies, including electron probe 
microanalyzer (EPMA), secondary ion mass spectrometry 
(SIMS), nano-SIMS, and laser ablation inductively cou-
pled plasma mass spectrometry (LA-ICP-MS), have been 
employed to analyse the major-, trace-element compositions, 
and radioisotope (uranium–lead/U–Pb) data of impact glass 
beads (Fig. 1) (Korotev et al. 2010; Long et al. 2022; Nem-
chin et al. 2022; Norman et al. 2019; Wang et al. 2024; Zhou 
et al. 2024). While homogeneous beads are ideal targets for 
in-situ analyses, many studies also include heterogeneous 
beads with sufficiently large glass patches for measurement. 
However, partially molten beads often exhibit complex tex-
tures and compositional zones, complicating the interpre-
tation of in-situ analysis data. A recent U–Pb dating study 
of various Chang’e-5 impact glass beads revealed that the 
heterogeneous beads contain higher proportions of common 

Pb (non-radiogenic Pb), resulting in systematically older 
calculated ages compared to the homogeneous group (Long 
et al. 2022). This systematic bias poses a potential challenge 
for the interpretation and accurate statistics of the growing 
database of impact glass beads. However, the mechanism by 
which undigested minerals influence the chemical composi-
tion of the glass matrix remains unclear.

In this study, we identified three impact glass beads con-
taining undigested zirconium-bearing minerals (zirconolite 
and zircon) in the Chang’e-5 lunar soil samples. We per-
formed element mapping using EPMA and Nano-SIMS and 
conducted U–Pb and Pb/Pb isotope analyses using SIMS 
for the three beads. Our data reveal the compositional com-
plexity of the glass matrix in heterogeneous impact glasses. 
Tracing the provenance and dating the formation age of 
such heterogeneous glasses require careful consideration.

Fig. 1  General workflow of previous studies on glass beads in lunar soils specifically using in-situ analytical techniques. Note that some heteroge-
neous glass beads with sufficiently large homogeneous glass patches were also used for EPMA, SIMS, or LA-ICP-MS analyses
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Materials and methods

Materials

Approximately 2000 glass beads were hand-picked from sam-
ples of the Chang’e-5 lunar soils (CE5C1000YJFM00301, 
00403, 00404, and CE5Z0806YJFM006) allocated by the 
China National Space Administration. These glass beads 
were embedded in transparent epoxy mounts and polished 
for further analysis. The mounts were coated with a carbon 
layer for scanning electron microscope (SEM) and EPMA 
analyses, and with a gold layer for SIMS and nano-SIMS 
analyses.

SEM analysis

A Zeiss Gemini 450 field emission SEM equipped with 
an energy dispersive spectroscopy (EDS) detector at the 
Institute of Geology and Geophysics, Chinese Academy of 
Sciences (IGGCAS) in Beijing was used to acquire back-
scattered electron (BSE) images and perform EDS analyses 
to identify the undigested minerals phases in heterogeneous 
beads. The acceleration voltage was set to be 15 kV with 
a current of 2.0 nA. Through this procedure, three impact 
glass beads containing zirconolite or zircon of sufficient size 
for SIMS analyses were identified. The compositions of tiny 
olivine inclusions were determined using EDS.

EPMA quantitative mapping

Major and minor element X-ray intensity maps of the three 
glass beads were obtained using a JEOL JXA-8230 electron 
probe micro-analyser (EPMA) at the School of Resources 
and Environmental Engineering, Hefei University of Tech-
nology, China. The analysis conditions were: an accelerat-
ing voltage of 15 keV and a specimen current of 100 nA. 
The mapping of glasses Nos. 1, 2, and 3 was carried out 
with pixel sizes of 0.24 μm, 0.28 μm, and 0.30 μm, respec-
tively, and the same dwell time of 70 ms. Four round scans 
were conducted, with the first round covering elements Mg, 
S, Na, and P; the second round covering elements Al, K, Si, 
and Mn; the third round covering elements Ca and Fe, and 
the fourth round covering elements Ti and Zr. Spot analyses 
for major mineral phases and glasses were calibrated using 
SPI (Structure Probe Inc.) international standard samples, 
Smithsonian microbeam standards and GB/T 17359-1998 
(Zhou Jianxiong standards group). Spot analytical data were 
used as internal standards for quantifying intensity maps. 
X-ray maps were corrected for dead time, classified, and 
standardized using XMapTools 4.3 (Lanari and Tedeschi 
2025; Lanari et al. 2014, 2019). Structural formulae and 

maps of end-member proportions were generated using the 
functions provided in XMapTools.

SIMS isotope analysis

The Pb isotope compositions of the zirconolite and host 
glass matrix in impact glass bead No. 1 (Supplementary 
Table S1), as well as the U–Pb isotope compositions of two 
zircon grains in glass beads Nos. 2 and 3 (Supplementary 
Table S2), were determined using a CAMECA IMS 1280HR 
ion microprobe at IGGCAS. The mount was cleaned with 
a fine (0.25 μm) diamond paste and ethanol to remove the 
carbon coating before adding a roughly 20-nm gold coating. 
A Gaussian illumination mode was used to focus a primary 
beam of 16O- to a size of ~ 3 μm, with an accelerated poten-
tial of − 13 KV and beam intensity of 200 pA.

For Pb isotope analysis, the multi-collector mode with 
five electron multipliers was used to measure 204Pb+ (L2), 
206Pb+ (L1), 207Pb+ (C), 208Pb+ (H1), and 96Zr2

16O2
+ (H2). 

The methodology followed was similar to that outlined in 
Li et al. (2010). Exit slit 3 was used with a mass resolving 
power (MRP) of 8,000 (50% peak height). The ion images 
with 96Zr2

16O2
+ and Pb isotopes on a 25 μm × 25 μm area 

were used to precisely locate the target minerals. The sig-
nal of 206Pb was used for peak-centring reference. Each 
spot measurement consisted of 4 s × 80 cycles, with a total 
analytical time of about 10 min. NIST610 glass (Baker et 
al. 2004) and Phalaborwa baddeleyite standards (Heaman 
2009) were used to calibrate the relative yield of different 
electron multipliers and evaluate the external reproducibil-
ity. Measured Pb isotopes were corrected for common Pb 
using non-radiogenic 204Pb.

For U–Pb isotope analysis, the electron multiplier of the 
mono-collector system was used as the secondary ion beam 
detector. Each measurement consisted of 15 cycles, with a 
total analytical time of approximately 20 min. The U-Th-
Pb isotope ratios were determined against the Plešovice 
zircon standard (Sláma et al. 2008). The Qinghu standard 
with reference age of 159.5 ± 0.2 Ma (Li et al. 2013) was 
used as an unknown sample to monitor accuracy. A total 
of seven analyses of the Qinghu zircon yield a concordia 
age of 158.9 ± 1.4  Ma, which is identical to the reference 
value. Measured U–Pb isotopes were corrected for common 
Pb using non-radiogenic 204Pb. Data reduction was carried 
out using the Excel add-in Isoplot package (Ludwig 2008). 
Individual uncertainties are reported at 1σ, and the weighted 
mean 207Pb/206Pb ages were calculated at a 95% confidence 
level. The detailed procedures followed those described in 
Li et al. (2010) and Liu et al. (2020).
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with clearly defined edge, showing no evidence of melting 
or decomposition (Fig. 2f). Additionally, an Fe particle is 
encased by troilite that formed later.

The glass matrix within each bead shows noticeable 
compositional heterogeneity, as revealed by compositional 
mapping of major elements (Figs. 3, 4, 5). For example, the 
variations of MgO content in glass beads Nos. 1–3 are 4.5–
7.5 wt%, 5.0–7.0 wt%, and 4.0–9.0 wt%, respectively. CaO 
contents range from 9.0 to 12.0 wt%, 9.5–11.0 wt%, and 
10.0–14.0 wt%, respectively. Al2O3 contents vary from 10.0 
to 25.0 wt%, 9.0–11.5 wt%, and 10.0–20.0 wt%, respec-
tively. The compositional anomaly regions are closely 
associated with the spatial distribution of residual minerals. 
High-Al2O3, high-MgO, and high-FeO regions are predomi-
nantly distributed along the edges of undigested plagioclase, 
olivine, and ilmenite, respectively (Figs. 3, 4, 5). In glass 
beads Nos. 2 and 3, the glass matrix surrounding undigested 
zircon crystals shows significantly elevated ZrO2 concentra-
tions (up to > 6 wt%). Plagioclase is a common undigested 
mineral phase, and its XAn (anorthite content) values also 
exhibit significant heterogeneity, both between and within 
individual crystals in each bead (Fig. 6). The ranges of XAn 
of plagioclase in the three beads are 0.70–0.95 (No. 1), 0.83–
0.89 (No. 2), and 0.75–0.95 (No. 3), reflecting the inheri-
tance of compositions from pristine magmatic plagioclases.

Radioisotope dating of zirconolite and zircon 
crystals

SIMS Pb–Pb dating and U–Pb dating were performed on 
zirconolite and zircon crystals within the three impact glass 
beads, respectively. For the ~ 30 μm triangular zirconolite 
within glass No. 1, eight Pb–Pb analyses were conducted 
using ~ 3  μm spot size. The results show extremely low 
204Pb/206Pb ratios (< 7 × 10− 7) (Supplementary Table S1), 
meaning the radiogenic 206Pb accounts for more than 99.9% 
of the total 206Pb and the common Pb (non-radiogenic Pb) 
correction has a negligible effect on the ages. The eight 
analyses yield consistent 207Pb/206Pb ages (Supplementary 
Table S1), with a weighted mean age of 4310 ± 13 Ma [2σ; 
MSWD (mean square weighted deviation) = 1.5] (Fig. 7a). 
Three U–Pb spot analyses were performed on the residual 
zircon crystal within glass No. 2 (Supplementary Table S2). 
One spot, located in the undigested zircon core, yields con-
cordant age with a 207Pb/206Pb age of 3921 ± 14 Ma show-
ing a high U concentration of ~ 94  µg/g (Supplementary 
Table S2). In contrast, the other two spot analyses, situated 
in regions enriched with nanoscale zircon particles, are dis-
cordant and exhibit low U concentrations of (Supplemen-
tary Table S2). For the zircon crystal in the glass No. 3, five 
SIMS U–Pb analyses (Supplementary Table S2) fall on or 

Nano-SIMS element mapping

Enlarged maps (Fig. 8) of the zirconolite and its surrounding 
glass matrix were acquired using a CAMECA 50L Nano-
SIMS at IGGCAS. A focused ~ 10 pA oxygen beam in the 
Gaussian mode with a beam size of ~ 250 nm in diameter 
was used. Seven secondary ion images, including 40Ca, 
48Ti, 56Fe, 89Y, 94Zr, and 208Pb, were acquired by rastering 
a 25 × 25 µm2 area with 512 × 512 pixels (single-pixel size 
50  nm) and a dwell time of 785  s/frame. The total map-
ping time was ~ 4.6 h. The analyses followed the methods 
of Hao et al. (2016) and Hao et al. (2024). Recorded ion 
images were processed and analysed using ImageJ with 
Open MIMS plugin. Firstly, all frames of ion images for 
each element were automatically aligned using the Tur-
boReg ImageJ plugin. Subsequently, these drift-corrected 
frames were combined. The denoising process followed the 
methods described by Hao et al. (2021). Due to the lack of 
reference materials to correct the matrix effect, only relative 
concentrations represented by counts per second (cps) are 
shown. Trace element cps data along a given profile in the 
ion images were extracted using XMapTools 4.3 (Lanari et 
al. 2014, 2019).

Results

Petrography and major element compositions

Based on numerous BSE images and EDS data, three glass 
beads containing undigested zirconolite and zircon crystals 
with grain sizes greater than 10  μm were identified from 
approximately 2000 glass beads in the allocated Chang’e-5 
samples. These three beads exhibit similar petrographic 
features but varying proportions of mineral phases, along 
with abundant vesicles (Fig.  2). Glass bead No. 1 is pre-
dominantly composed of glass matrix (~ 65 vol%) and 
plagioclase (~ 28%), with minor amounts of zirconolite, 
ilmenite, olivine, clinopyroxene, apatite, Fe particles, and 
troilite (Fig. 2a). A triangular zirconolite crystal, approxi-
mately 30  μm in size, displays smooth edges and con-
tains baddeleyite and ilmenite inclusions or intergrowths 
(Fig.  2b). Glass bead No. 2 primarily consists of glass 
matrix (~ 91 vol%), with subordinate plagioclase (~ 6%), 
zircon (~ 2%), and minor quartz, Fe particles, and troilite 
(Fig. 2c). A 10 μm zircon crystal is located at the edge of 
this glass bead, surrounded by numerous nanoscale zircon 
particles that increase in size with distance from the undi-
gested zircon core (Fig.  2d). Glass bead No. 3 comprises 
glass matrix (~ 67 vol%), plagioclase (~ 25%), quartz (5%), 
and minor zircon, ilmenite, olivine, Fe particles, and troilite 
(Fig. 2e). The zircon crystal in this bead preserves rounded 
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Fig. 2  BSE images of three impact glass beads containing zirconolite 
and zircon crystals. a BSE image of bead No. 1 displaying various 
undigested mineral facies. Mineral abbreviations follow Warr (2021). 
b Enlarged BSE image of the zirconolite crystal in a. Baddeleyite 

occurs as tiny grains along the edges or as exsolution bands. c BSE 
image of bead No. 2. d Enlarged BSE image of the zircon crystal in c 
showing dissolved nanoscale particles. e BSE image of bead No. 3. f 
Enlarged BSE image of the zircon crystal in e
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Fig. 4  Quantitative compositional mapping results of glass bead No. 
2. a–f Elemental oxide maps (wt%) of Al2O3, SiO2, FeO, MgO, CaO, 
and ZrO2, respectively, in glass bead No. 2. In e and f, the colour scale 

limits were adjusted to emphasize chemical variations at low wt%; as 
a result, regions with higher wt% values exceeding the upper limit are 
displayed using the final colour of the bar

 

Fig. 3  Quantitative compositional mapping results of glass bead No. 1. 
a–f Elemental oxide maps (wt%) of Al2O3, SiO2, FeO, MgO, CaO, and 
Na2O, respectively, in glass bead No. 1. The discrepancy between BSE 

images and EPMA maps is due to additional polishing of the sample 
surface after SIMS and NanoSIMS analyses
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and profiles of normalized cps values (Fig. 8j; Supplemen-
tary Table S3). Similar decreasing trends of Zr abundances 
are also observed in the maps obtained by EPMA mapping 
(Figs. 4f, 5f). Notably, some elements, such as Ti and Zr, 
exhibit complex, streamlined distributions (Figs. 4f, 8c and 
e).

Discussion

Undisturbed U–Pb system in zirconolite and zircon 
in glass beads

Meteoroid impacts are major geological processes that 
modify the lunar surface (e.g., Adams et al. 1975; Morris 
1978). Large-scale meteoroid impacts can induce vary-
ing degrees of melting of precursor lunar regolith materi-
als (e.g., Bischoff and Stoffler 1992; Cintala and Grieve 
1998; Delano 1991; Ryder and Spudis 1987). A significant 
number of zircon and zirconolite crystals, either inherited 
from precursor magmatic rocks, or recrystallized and newly 
formed within impact melts, have been identified in various 
impact-generated breccia fragments from Apollo samples. 
U–Pb dating of these zircon crystals provides important 
constraints on the early volcanic history of the Moon, span-
ning from 4.42 to 4.0 Ga (Nemchin et al. 2008, 2009, 2012), 
as well as on early impact events prior to 3.9 Ga (Barboni et 
al. 2024; Grange et al. 2009; Nemchin et al. 2012; Norman 
and Nemchin 2014).

Impact glass beads underwent a higher degree of partial 
melting compared to impact breccia. It remains uncertain 
whether undigested zirconium-bearing minerals can retain 
pristine age information from before the impact. This study 
presents the first identification and geochronological con-
straints on zircon and zirconolite as residual minerals in 

near the Concordia curve, which yields a weighted mean 
207Pb/206Pb age of 2043 ± 53 Ma (MSWD = 0.1; Fig. 7c).

Pb isotope and nano-SIMS mapping of glass matrix

SIMS Pb isotope spot analysis was conducted on the glass 
matrix in bead No. 1. Six, four, and three spot analyses were 
performed along three profiles (P1–P3; Fig.  8a), respec-
tively. The count rate of 206Pb for the spot closest to the zir-
conolite is as high as 1035 cps, while for spot farthest from 
the zirconolite is less than 10 cps (Supplementary Table 
S1). Along all three profiles, the 206Pb cps values, represent-
ing relative 206Pb abundances, show a trend of gradually 
decreasing with distance from the zirconolite (Fig.  8f–h). 
Compared to the ~ 4.31 Ga zirconolite, the 207Pb/206Pb ratios 
of the glass matrix exhibit larger uncertainties (Fig. 8i) due 
to lower Pb abundance and ion yield of secondary Pb ions in 
glasses. Although the spots on the glass matrix show signifi-
cantly varying Pb abundances, their 207Pb/206Pb ratios are 
generally consistent with or slightly higher than those of the 
zirconolite (Fig. 8i).

The distributions of trace isotopes 208Pb, 46Ti, 89Y, and 
94Zr in the glass matrix surrounding the zirconolite crystal 
were mapped using Nano-SIMS with a single-pixel size of 
~ 50 nm (Fig. 8b–e). The production rate of secondary Pb 
ion in the glass matrix during Nano-SIMS analysis is very 
low, resulting in low cps values of 208Pb (< 1). After denois-
ing, the 208Pb map reveals that Pb abundance in the glass 
near the zirconolite is slightly higher than in the glass farther 
away (Fig. 8b). The production rates of secondary Ti, Y, and 
Zr ions in the glass matrix are higher than that of Pb, with 
the highest cps values of Ti, Y, and Zr ions being 80, 14, 
and 6, respectively. The decreasing trends of the abundances 
of these elements away from the zirconolite are more pro-
nounced than that of Pb, as shown by the maps (Fig. 8c–e) 

Fig. 5  Quantitative compositional mapping results of glass bead No. 3. a–f Elemental oxide maps (wt%) of Al2O3, SiO2, FeO, MgO, CaO, and 
ZrO2, respectively, in glass bead No. 3
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Fig. 6  XAn (anorthite content) maps of undigested pla-
gioclase crystals in the three heterogeneous glass beads 
Nos. 1–3
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heterogeneous impact glass beads formed during impact-
induced melting. For the zirconolite crystal in glass No. 1 
(Fig. 2a, b), eight SIMS analyses with a spatial resolution of 
3 μm show consistent 207Pb/206Pb ages of 4.31 Ga (Fig. 7a), 
indicating no significant Pb migration (loss or segregation) 
within the crystal during the impact event. Therefore, the 
average 207Pb/206Pb age of 4310 ± 13  Ma is interpreted as 
the formation age of pristine zirconolite. The zircon crystal 
in glass bead No. 2 exhibits an obvious dissolved structure, 
with a surviving core surrounded by numerous nanoscale 
zircon particles (Fig. 2c, d). SIMS U–Pb analyses reveal that 
the surviving core records a concordant age of 3921 ± 14 Ma, 
suggesting no significant loss of radiogenic Pb. In contrast, 
the other nanoscale zircon particles show discordant U–Pb 
ages (Fig. 7b), indicating partial loss of radiogenic Pb dur-
ing the decomposition process induced by impact melting. 
The zircon crystal in bead No. 3 shows an rounded shape 
with clearly defined edge (Fig. 2e, f), suggesting minimal 
influence from partial melting. Consistent with this, the 
five U–Pb analyses yield consistent 207Pb/206Pb ages with a 
weighted mean value of 2043 ± 53 Ma (Fig. 7c).

These data indicate that zircon and zirconolite in impact 
glass beads can preserve pristine U–Pb age despite expe-
riencing high-temperature impact melting. Conventional 
closure temperatures for the U–Pb system in zircon and 
zirconolite are estimated to be around 800–900  °C under 
typical geological cooling rates (Cherniak and Watson 
2001; Wu et al. 2010). Such estimates are not applicable to 
the extreme conditions associated with lunar impact glass 
beads. During ballistic flight on the lunar surface, melt drop-
lets cool at ultrafast rates on the order of ~ 1500 °C/s and 
4200 °C/s for ~ 220 to ~ 94 μm beads (Arndt et al. 1984). To 
better account for such rapid cooling scenarios, we applied 
the diffusion parameters of Cherniak and Watson (2001) 
within the closure temperature calculation model of the 
Ganguly and Tirone (1999). The results suggest that under 
these high cooling rates, the closure temperature effectively 
approaches the peak temperature of the impact melt droplet 
(> 1200 °C) (Manske et al. 2022), meaning the system likely 
never exceeded its closure temperature during cooling. As a 
result, the U–Pb system in undigested zircon and zirconolite 
remained effectively closed. This supports our interpretation 
that the measured U–Pb ages represent pristine crystalliza-
tion ages, and not impact-reset ages.

Provenance of the three impact glass beads

The Chang’e-5 landing site is located in the Em4 mare 
basalt unit, northwest of the Ocean Procellarum (Li et al. 
2022). Radioisotope dating reveals that various basaltic 
fragments in this region share a consistent formation age of 
2030 ± 4 Ma (Li et al. 2021), indicating that the Chang’e-5 

Fig. 7  Pb–Pb and U–Pb dating results of zirconolite and zircon crystals 
in three impact glass beads. a Pb–Pb dating results of the zirconolite 
crystal in glass No. (1) b U–Pb dating results of the zircon crystal in 
glass No. (2) c U–Pb dating results of the zircon crystal in glass No. 3
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identified based on their petrographic features and mineral 
compositions (Long et al. 2022; Zeng et al. 2023). As direct 
products of impact gardening, glass beads containing abun-
dant undigested minerals offer valuable insights into exotic 
lunar materials beyond the sampling site. Furthermore, 
undigested zirconium-containing minerals can be used to 

lunar soils are predominantly composed of locally derived 
basaltic materials. This is further supported by geochemi-
cal analyses of the returned bulk soils and homogeneous 
impact glass beads (Long et al. 2022; Yang et al. 2022; Zong 
et al. 2022). Only a few exotic clasts and glasses, ejected 
from the lunar highlands or other mare regions, have been 

Fig. 8  Pb isotope data of the glass matrix and Nano-SIMS mapping 
results. a BSE image of bead No. 1 showing three profiles of SIMS spot 
analyses (P1–P3) (red dotted lines and ellipses) and the Nano-SIMS 
mapping region (yellow dashed rectangle). b–e Nano-SIMS maps of 
relative content of 208Pb, 46Ti, 89Y, and 94Zr, respectively. The positions 
of two profiles, P4 (3.5 μm) and P5 (5 μm), extracted from the Nano-
SIMS maps are shown in e. The colour scale limits were adjusted to 

emphasize chemical variations at low cps; as a result, regions with 
higher cps values exceeding the upper limit are displayed using the 
final colour of the bar. f–h206Pb counts per second (cps) values for 
spots along the three profiles (P1–P3). i Comparison of 207Pb/206Pb 
ratios between the zirconolite crystal and the glass matrix. j Extracted 
cps values of 89Y and 94Zr along the profiles (P4–P5) in Nano-SIMS 
maps indicated in e, normalized from 0 to 1
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Complexity and pitfalls of major element 
compositions of glass matrix

The MgO/Al2O3 and CaO/Al2O3 ratios are widely used to 
distinguish different origins of glasses, with an MgO/Al2O3 
ratio of 1.25 serving as boundary between volcanic and 
impact glass beads, and a CaO/Al2O3 ratio of 0.75 as the 
boundary between highland-origin and mare-origin impact 
glass beads (Delano 1986; Delano et al. 2007; Naney et al. 
1976; Zeigler et al. 2006). As shown in the EPMA and Nano-
SIMS mapping results, the compositions of major elements 
(such as Ca, Al, Mg, Fe, etc.) and trace elements (such as Ti, 
Y, Zr, Pb, etc.) in the glass matrix exhibit significant varia-
tions (Figs. 3, 4, 5, 8), indicating incomplete melting and 
homogenization. These compositional complexities present 
a challenge in obtaining a representative composition of the 
entire glass bead using traditional in-situ microanalytical 
methods.

The major element composition data extracted from the 
pixels in the EPMA mapping of the glass matrices in all three 
heterogeneous glass beads consistently show low MgO/
Al2O3 ratios (< 1.25), placing them in the region of impact 
glass. However, their CaO/Al2O3 ratios vary widely (mostly 
between 0.3 and 1.5), spanning both highland-impact and 
mare-impact regions on the widely used discrimination dia-
gram (Fig. 9). Variations in Al2O3 contents and CaO/Al2O3 
ratios in partial glass matrix are spatially correlated with 
the distance from undigested plagioclase crystals within 
the matrix (Figs. 3, 4, 5). Consequently, the major element 
compositions obtained from EPMA spot analyses of local 
regions within the heterogeneous glass matrix of a single 
bead show inconsistent provenance interpretations (Fig. 9), 
which contradicts the geochronological and compositional 
features of the undigested minerals.

By integrating the composition of each pixel and 
accounting for the density of each mineral species, the bulk 
composition of the entire glass bead can be calculated from 
quantitative maps (Lanari and Engi 2017) (Supplementary 
Table S5). Glass bead No. 1, containing ~ 4.31 Ga zircono-
lite, exhibits a bulk composition with a CaO/Al2O3 ratio of 
0.64 and MgO/Al2O3 ratio of 0.21, indicative of a highland 
impact origin. The other two glass beads, No. 2 and No. 
3, containing ~ 3.92 Ga and ~ 2.04 Ga zircon, respectively, 
show bulk compositions characteristic of mare impact 
origins, with CaO/Al2O3 ratios of 0.85 and 0.77 (Fig.  9). 
The provenances indicated by these bulk compositions are 
consistent with those inferred from the ages of the zirco-
nium-bearing minerals and the compositions of undigested 
minerals.

determine their formation ages, providing additional chron-
ological constraints on their provenances.

The pristine crystallization age of zirconolite in glass 
bead No. 1 (Fig. 2b) is 4310 ± 13 Ma, which is significantly 
older than the ages of most mare basalts in lunar records 
(e.g., Borg et al. 2009; Merle et al. 2024; Shearer et al. 
2023; Snape et al. 2016; Zhang et al. 2024). Combined with 
the composition of most undigested plagioclase, with XAn 
values between 0.83 and 0.88 (Fig.  6a), and olivine with 
Mg# [= molar Mg/(Mg + Fe)] values between 0.51 and 0.61 
(Supplementary Table S4), this glass bead is likely derived 
from the melting of highland materials dominated by alkali-
suite rocks (Prissel and Gross 2020). The presence of a few 
high-Ca plagioclase crystals with XAn > 0.95 (Fig. 6a) sug-
gests the involvement of other highland materials (Fig. 9a), 
such as anorthosite or Mg-suite rocks (Prissel and Gross 
2020). Therefore, bead No. 1 likely represents an exotic 
grain ejected from the lunar highlands and deposited at the 
Chang’e 5 sampling site.

The concordant age of the undigested zircon core in 
glass bead No. 2 (Fig.  2d) is 3921 ± 14  Ma, significantly 
older than the age of the Chang’e-5 basalt (2.0 Ga) (Che 
et al. 2021; Li et al. 2021), indicating an exotic origin for 
this bead. Similar ages have been reported from the Apollo 
high-Al basalts (Snape et al. 2016, 2019) and lunar basaltic 
meteorites (Merle et al. 2024), representing the oldest mare 
volcanism on the Moon. One undigested plagioclase crys-
tal in this bead shows compositional zoning with the XAn 
values ranging from 0.83 to 0.89 (Fig. 6b), consistent with 
a basalt origin. Therefore, we interpret this bead as having 
been ejected from an ancient basaltic region with an age of 
~ 3.9 Ga.

The age of the undigested zircon crystal in glass bead No. 
3 (Fig. 2f) is 2043 ± 53 Ma, which is consistent with the pre-
viously reported formation age of Chang’e-5 basalt as deter-
mined by Pb-Pb isochron dating of basalt fragments (Boschi 
et al. 2023; Che et al. 2021; Hao et al. 2024; Li et al. 2021) 
and zircon crystals (Zhou et al. 2023), within uncertain-
ties. Most undigested plagioclase crystals show XAn values 
between 0.76 and 0.86, comparable to those in Chang’e-5 
basalt (Li et al. 2023). The presence of undigested quartz 
(Fig. 2e) in this bead is consistent with the highly evolved 
petrographic features of Chang’e-5 basalt, reflecting a high 
degree of fractionation crystallization. Therefore, we sug-
gest that the melting materials of this bead are predomi-
nantly derived from local mare basalt materials from the 
Chang’e-5 landing region.
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Fig. 9  Density plot of MgO/Al2O3 and CaO/Al2O3 
ratios of pixels extracted from the mapping results of 
the glass matrices in the three glass beads Nos. 1–3. 
The horizontal dashed line indicates MgO/Al2O3 = 1.25, 
separating volcanic glass beads (above) and impact 
glasses (below), and the vertical dashed line denotes 
CaO/Al2O3 = 0.75, distinguishing highland impact 
glasses (left) from mare impact glasses (right) (Delano 
1986; Delano et al. 2007; Naney et al. 1976; Zeigler et 
al. 2006)
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solidification of impact melt, which further complicates the 
heterogeneity of the glass matrix.

Implications for U–Pb dating of glass beads

Impact glass beads serve as direct time capsules of lunar 
impact events. 40Ar/39Ar and U–Pb dating of these glasses 
can be used to determine the timing of individual impact 
events, offering critical insights into the bombardment his-
tory of the Moon and, by extension, the Earth-Moon system 
(Culler et al. 2000; Delano et al. 2007; Levine et al. 2005; 
Long et al. 2022; Nemchin et al. 2022; Norman et al. 2012, 
2019). In this context, the target of geochronology is the 
formation age of the glass itself, rather than that of relict 
minerals it may contain. To accurately date the glass beads 
using SIMS U–Pb method, it is essential to correct for the 
proportion and isotopic composition of common Pb, which 
is not accumulated from in-situ U-Th decay post-formation 
but inherited from precursor regolith materials (Long et al. 
2022; Nemchin et al. 2022; Norman et al. 2012).

Homogeneous glass beads likely experienced significant 
Pb volatilization during impact melting and quenching, 
leading to substantial Pb loss and a homogenized common 
Pb isotopic composition that reflects an average of the rego-
lith-derived melt. In contrast, heterogeneous beads retain 
Pb compositions that were not fully volatilized or homog-
enized, with its distribution largely controlled by the pres-
ence of undigested mineral phases exhibiting variable Pb 
abundances. Residual minerals with inherently higher Pb 
abundances—such as zirconolite, baddeleyite, and zircon—
exert a greater influence on the Pb isotopic composition of 
the surrounding glass matrix than Pb-poor silicate phases. 
The present SIMS Pb isotope analyses and Nano-SIMS 
maps on the glass matrix surrounding the ~ 4.31 Ga zir-
conolite confirm that the high proportions of common Pb in 
these glasses originate from the partially melted zirconolite 
crystal through Pb diffusion. Although this Pb distribution 
mechanism is demonstrated in heterogeneous glass beads 
containing Zr-bearing minerals, we propose that the Pb 
isotopic compositions of other heterogeneous beads—with 
abundant relict silicate phases—are also largely influenced 
by the residual minerals due to higher ²⁰⁷Pb/²⁰⁶Pb ratios in 
the common Pb component.

Correcting for common Pb in heterogeneous glass beads 
is challenging due to the unpredictable Pb isotope com-
position of precursor minerals and the amount of Pb lost 
from the molten droplet. A recent geochronological study, 
combined with multi-disciplinary modelling of impact melt 
generation and migration of various Chang’e-5 impact glass 
beads, has revealed that heterogeneous beads often exhibit 
elevated 207Pb/206Pb ratios and lower 238U/206Pb ratios 
compared to their homogeneous counterparts, suggesting 

Diffusion-controlled elemental distribution

SIMS Pb isotope analyses of the glass matrix reveal that 
206Pb abundances, indicated by counts per second (cps) val-
ues of 206Pb, decrease gradually outward from the zircono-
lite crystal along all three profiles (Fig. 8f–h). We propose 
that this decreasing trend results from the diffusion of Pb 
released by the partially melted zirconolite under the high-
temperature conditions associated with the impact. Multiple 
lines of evidence support the partial melting of the precursor 
zirconolite: (1) the preserved zirconolite, in direct contact 
with the glass matrix, shows smooth edges and lacks the 
straight boundaries typical of pristine crystals (Fig. 2b). (2) 
The presence of baddeleyite as tiny grains along the edges 
of zirconolite or as exsolution bands within zirconolite indi-
cates a high-temperature conversion process during impact 
melting (Loiseau et al. 2003; Zhang et al. 2011). Notably, 
the 207Pb/206Pb ratios of most spots on the glass matrix are 
consistent with those of zirconolite (Fig.  8i), indicating 
that the glass matrix inherits the Pb isotope composition of 
the partially melted zirconolite and that there is no isotope 
fractionation during the high-temperature diffusion pro-
cess. Some spots farther from the zirconolite exhibit higher 
207Pb/206Pb ratios (Fig.  8i), likely due to the involvement 
of Pb from other silicate minerals, such as plagioclase and 
pyroxene, which contain higher 207Pb/206Pb ratios of non-
radiogenic initial Pb (Li et al. 2021).

Nano-SIMS maps reveal clear enrichments of 46Ti, 89Y, 
and 94Zr in the glass matrix surrounding the undigested zir-
conolite (Fig. 8c–e). Most profiles extracted from the glass 
matrix surrounding the undigested zirconolite exhibit com-
positional gradients consistent with diffusion-controlled 
transport. For example, profile P4 (Fig.  8e) exhibits a 
smooth, monotonic decrease in the concentrations of ⁸⁹Y and 
⁹⁴Zr with increasing distance from the zirconolite (Fig. 8j). 
The difference in the curvature of ⁸⁹Y and ⁹⁴Zr profiles cor-
responds to the expected difference in diffusion coefficients 
between Y and Zr (Holycross and Watson 2016), indicating 
a typical diffusion profile (Liu et al. 2025). These lines of 
evidence confirm diffusion-controlled compositional com-
plexity in the heterogeneous glass beads during the incom-
plete melting of involved regolith materials. Along another 
profile P5, the Y and Zr abundances generally show a 
decreasing trend, however, both elements exhibit significant 
fluctuations, and no clear difference in curvature is observed 
between their profiles. These features, combined with the 
streamlined chemical patterns observed in the Nano-SIMS 
and EPMA maps (e.g., Figs. 4f, 8c–e), suggest the additional 
influence of localized melt convection within the droplet. 
We interpret these mixed profiles as the result of a combined 
effect of diffusion and convective transport during the rapid 
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high proportions of common Pb in the heterogeneous glass 
matrix, originating from partially melted minerals through 
diffusion-controlled processes, lead to significant uncertain-
ties in U–Pb dating of impact events.
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