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Experimental alteration of allanite at 200°C: the role of pH
and aqueous ligands
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Abstract: Allanite is a major host of rare earth elements (REEs) in the continental crust. In this study, reaction
mechanisms behind allanite alteration are investigated through batch experiment runs on natural allanite grains
in carbonate-bearing hydrothermal fluids at 200°C, with initial acidic (pH = 4) or alkaline (pH = 8) conditions
and with different aqueous ligands (120 mmol kg−1 of F, Cl, P or S). Time-series experiment runs in F-doped
systems at different durations between 15 and 180 days reached a steady state at 120 days. The pH efficiently
controls the allanite alteration process, with initial high pH, alkaline conditions being more reactive (75% alter-
ation compared with 25% under acidic conditions). The ligand also significantly influences the alteration pro-
cess under initial acidic conditions with the P-doped system (70%) almost non-reactive for the Cl- and S-doped
systems (,5%). In the alteration rim, REEs are mainly redistributed in REE-bearing phases either as carbonates
(F-doped) or phosphates (P-doped). The relatively flat REE-normalized patterns of the recovered experimental
fluids suggest a fractionation of light rare earth elements (LREEs) over heavy rare earth elements (HREEs) dur-
ing the course of the alteration reactions. It is proposed that secondary REE mineral precipitation at the reaction
front creates a local disequilibrium in the solution and a steep chemical gradient promoting allanite dissolution
and thus its alterability.

Supplementary material: Tables S1, S2, S3 corresponding to EMP data and analytical conditions, Figure S4
showing BSE images of the starting allanite material and Figure S5 presenting EMP compositions (REE versus
Ca) of the Calcite and BGM experimental products are available at https://doi.org/10.6084/m9.figshare.c.
6699992

Allanite, a mineral of the epidote group with the ideal
formula CaREEFe2+(Al, Fe3+)2(Si2O7)(SiO4)O
(OH), is a major REE carrier mineral in the continen-
tal crust, with preferential incorporation of the light
REEs (LREEs: La to Gd) over the heavy REEs
(HREEs: Tb to Lu + Y). Primary allanite occurs as
an accessory phase in magmatic and metamorphic
rocks (Gieré and Sorensen 2004 and references
therein). It is a good petrological proxy and geo-
chronometer for metamorphic processes (e.g. Engi
2017), magma sourcing (e.g. Anenburg et al. 2015)
or mineralization under hydrothermal conditions
(e.g. Pal et al. 2011). Allanite has also been
described as the main primary REE and U source
in supergene and hydrothermal systems (Caruso
and Simmons 1985; Berger et al. 2008; Ichimura
et al. 2020), reaching economic levels (Chabiron
and Cuney 2001; Corriveau et al. 2007). Hydrother-
mal alteration of allanite is common (Poitrasson
2002) and often occurs as partial replacement of pri-
mary allanite by secondary REE minerals. These
include fluorocarbonates (e.g. Middleton et al.

2013), phosphates (Berger et al. 2008) and silicates
(Smith et al. 2002). Frequently, secondary
Th-minerals are also described in association with
allanite replacement (Middleton et al. 2013). As a
main REE host, these alteration reactions are thus
important for understanding REE mass transfer,
with their economic implications as strategic metals.
Furthermore, understanding associated actinide
mobility in REE-rich hydrothermal systems is also
crucial, because it can be decisive for REE mining
(as by-products or nuclear waste).

It is widely accepted that the greater sensitivity of
allanite to alteration, compared with that of epidote
(Price et al. 2005), is partly due to its metamict
state, which is caused by α-particle bombardment
damaging the structure, even for a low Th and U con-
tent (Ewing et al. 1987; Ercit 2002). The role of other
inherent factors, such as the crystal chemistry of the
allanite and the physicochemical properties of the
fluid, remains poorly understood. While numerous
examples of natural allanite alteration have been
reported, its experimental reactivity in the presence
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of hydrothermal fluids has received little attention,
only at high pressure and high temperature condi-
tions (Krenn et al. 2012) or as a product of monazite
and xenotime alteration (Budzyń et al. 2011, 2017).
In order to fill this gap, allanite alteration experi-
ments have been conducted on natural homogeneous
crystalline grains in the presence of carbonate-
bearing hydrothermal fluids doped with various
ligands (120 mM of F, Cl, P, S) under initial acidic
and high-pH alkaline conditions at 200°C and Psat
for durations of 15 to 180 days. The role of added
ligands was investigated for initial acidic conditions
(pH around 4 at room temperature) common under
hydrothermal conditions (Seward et al. 2014). The
investigated ligands are elements of importance for
REE mobility in hydrothermal systems due to strong
aqueous complexation at 200°C (Gammons et al.
1996). The kinetics of the alteration reactions were
investigated through time-dependent experiments
using both acidic and high-pH alkaline fluids (pH
= 8 at room temperature) in the presence of F. In
this study, the experimental alteration of allanite is
strongly controlled by the fluid composition and
the precipitation of secondary REE minerals in the
form of fluorocarbonates and phosphates.

Analytical methods and experimental
procedure

Starting material

All experiments were performed using fragments
fromamonocrystal of allanite-Ce (henceforth allanite)
from the Frontenac Formation in the Central Metase-
dimentary Belt of the Greenville Orogen (Ontario,
Canada). Crystallization ages, based on associated
titanite U–Pb geochronology, are around 1157–
1178 Ma (Mezger et al. 1993). The composition,
determined by electron probe microanalyser
(EPMA), is homogeneous and corresponds to an inter-
mediate composition between ferriallanite and allanite
(general formula: Ca1–1.2REE0.6–0.8Al1.5–1.7Fe

3+
0.1–

0.5Fe
2+

0.8–1.1Mg0.1Si3.1–3.3O12(OH)) (Table S1,
supp. mat.). The content of radionuclides (such as 0.
36–0.79 wt% ThO2 and UO2) ranges mostly below
the detection limit (DL).

The crystal was crushed manually and then
ground mechanically using a planetary micromill
Fritsch Pulverisette 7. To ensure maximized kinetics
and yet a suitable grain size for post-experimental
characterization, we selected an initial grain size of
20–50 µm after sieving. Traces of REE-carbonates
in microcracks (observed by scanning electron
microscope but not detected on the X-ray diffraction
pattern) were removed by soaking the allanite pow-
der in a 1 M acetic acid solution in an ultrasonic
bath for 10 min. After centrifugation (3500 rpm,

10 min), the solid residue was filtered through a
2.7 µm glass fibre filter and dried overnight at 50°
C. The material was stored in spectroscopic plastic
tubes in the dark at ambient temperature.

Experimental procedure

Experiments were conducted by reacting 150 mg of
powdered allanite (Fig. S4, supp. mat.) with 1.5 ml
of the aqueous solution (fluid/solid ratio = 10) in
3 ml Teflon cell reactors sealed into a steel autoclave
without agitation (‘static batch reactor’) and placed
in a multi-oven at 200°C (Psat ≈ 16 bar or 16 bar
+ pCO2, when CO2 was added). However, pCO2

varies during alteration and these variations were
not quantified. Acidic solutions with an initial pH
= 4 were obtained by adding to ultrapure water 99.
9% certified pure carbonic ice (around 30 mg). For
alkaline systems, ultrapure water was replaced by
1.5 ml of a 1 M NaHCO3 solution (pH = 8.7,
Lafay et al. 2014). These solutions were mixed
with 120 mM (equivalent to the REE molar content
in allanite) of F (introduced as solid NaF), P (as Na3-
PO4, 12H2O), S (as Na2SO4) or Cl (as NaCl). An ini-
tial time series of experiments using NaF as ligand in
acidic and alkaline systems was performed (15, 30,
60, 120 and 180 days) to investigate the kinetics of
the reaction processes (Table 1). Experiments with
other ligands were run for 120 days. At the end of
each experiment, the sealed reactor was rapidly
quenched in cold water. Recovered solutions were
carefully collected with a syringe, filtered to remove
solid residue (0.2 µm), diluted 5 times in ultrapure
water slightly acidified with nitric acid and immedi-
ately stored at 4°C in an ion-free tube for further
characterization. The residual solid was collected,
dried at 60°C overnight, weighted and stored at
ambient temperature. A fraction of each solid run
product was mounted in epoxy resin and finely pol-
ished (mirror surface) for microscopic and electron
microprobe analyses.

Solid characterization methods

X-ray diffraction and Rietveld refinement. Mineral
modal abundances of initial and post-experimental
solids were characterized by X-ray diffraction
(XRD) at ISTerre (Grenoble, France). Samples
were ground in ethanol using a McCrone microniz-
ing mill, oven-dried overnight and prepared as a ran-
domly oriented mount. The XRD patterns were
recorded with a Bruker D8 powder diffractometer
equipped with a SolXE Si(Li) solid-state detector
from Baltic Scientific Instruments using CuKα_1
+ 2 radiation. Intensities were recorded at 0.026°
2θ step intervals from 5 to 90° (10 s counting time
per step). Eva Bruker software associated with the
International Centre for Diffraction Data (ICDD)
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Table 1. Experimental conditions and solid products

Set Exp. Carbonate source Initial
pH

Ligands (120 mmol
kg−1)

Duration
(days)

Aln
(%)

Secondary solid products

B1 B1015 Carbonic ice1 4 NaF 15 93 Bsn (1.2%); Syn (1.5%); Flr (2.0%); Hem (2.1%)
B1030 Carbonic ice1 4 NaF 30 92 Bsn (2.2%); Syn (1.0%); Flr (2.5%); Hem (2.0%)
B1060 Carbonic ice1 4 NaF 60 95 Bsn (3.2%); Flr (3.6%); Hem (2.4%); Ana (4.9%)
B1120 Carbonic ice1 4 NaF 120 76 Bsn (5.1%); Syn (,1%); Flr (4.3%); Hem (2.2%); Ana

(12%)
B1180 Carbonic ice1 4 NaF 180 77 Bsn (5.6%); Flr (5.8%); Hem (4.7%); Ana (7.3%)

B2 B2015 NaHCO3
− 1M 1.5 ml 8.7 NaF 15 36 Bsn (2.0%); Syn (1.0%); Pst (6.6%); BGM (8.9%); Cal

(4.5%);
Hem (8.9%); Ana (22%); Sme (6.7%); Nsd (3.1%)

B2030 NaHCO3
− 1M 1.5 ml 8.7 NaF 30 29 Bsn (3.1%); Syn (1.0%); Pst (8.9%); BGM (5.7%); Cal

(4.5%);
Hem (8.4%); Ana (26%); Sme (7.7%); Nsd (4.1%)

B2060 NaHCO3
− 1M 1.5 ml 8.7 NaF 60 31 Bsn (3.1%); Syn (1.7%); Pst (8.9%); BGM (9.4%); Cal

(8.4%);
Hem (9.1%); Ana (24%); Sme (7.6%); Nsd (1.8%)

B2120 NaHCO3
− 1M 1.5 ml 8.7 NaF 120 23 Bsn (5.2%); Syn (,1%); Pst (3.3%); BGM (5.9%); Cal

(9.5%);
Hem (9.9%); Ana (31%); Sme (7.2%); Nsd (3.8%)

B3 B3P120 Carbonic ice1 4 Na3PO4.12H2O 120 27 Mnz (15%); Hap (13%); Hem (6.8%); Ana (31%); Sme
(6.3%)

B3S120 Carbonic ice1 4 Na2SO4 120 97 Anh (1.6%); Ana (1.6%)
B3Cl120 Carbonic ice1 4 NaCl 120 98 Hl (2.0%)

1Carbonic ice is certified 100% pure CO2 – around 30 mg (after the epoxy reactor closure). Estimated standard deviation is,2% for values.10% and does not exceed 10% for lower quantification. Aln, allanite;
Ana, analcime; Anh, anhydrite; BGM, burbankite-groupmineral; Bsn, bastnäsite; Cal, calcite; Chl, chlorite; Flr, fluorite; Hap, hydroxyapatite; Hem, hematite; Hl, halite; Mnz, monazite; Nsd, nordstrandite; Pst,
parisite; Sme, smectite; Syn, synchysite. For a better reading comprehension with Aln (allanite), Ana designate analcime instead of the common abbreviation Anl. Source: abbreviations from Warr L.N. (2021).
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Powder Diffraction File (PDF) database was used to
determine the modal composition of the powder on a
significant part of the recovered solid product for all
alteration experiments. This enables distinguishing
between the different REEminerals in the solid prod-
uct. Rietveld refinement with Profex/BGMN soft-
ware was then performed to precisely quantify
mineral abundances. The quality of the Rietveld
refinement is assessed by the χ2 factor, which lies
between 2.5 and 4 for all experiments.

Scanning electron microscopy. The mineral distribu-
tion and microstructure of the experimental solids
were investigated by using a ZEISS Gemini 500
scanning electron microscope (SEM). The measure-
ments were carried out in high-vacuummode using a
high tension (EHT) of 3 kV for a working distance
(WD) between 3.4 and 4.8 mm. Samples were sput-
tered with a 15 nm thick cover of Au-Pd. Comple-
mentary investigations were performed using the
conventional environmental SEM Tescan Vega
3. The measurements were carried out in high-
vacuum mode (9.9 × 10−9 bar), using an accelerat-
ing voltage of 16 kV, with 90 nm spot size and
15 mm WD. Samples were sputtered with 20 nm of
carbon. The microscope was equipped with a
30 mm2 Energy Dispersive X-Ray Spectroscopy
(EDS) manufactured by Rayspec with SamX’s elec-
tronic system and software.

Electron probe microanalyser. Quantitative chemi-
cal analyses of initial and post-experimental allanite
and secondary products (when the grain sizewas suit-
able) were carried out using a JEOL JXA-8230
EPMA equipped with five wavelength-dispersive
spectrometers (WDS) at ISTerre (Grenoble, France).
Analytical conditions were 15 kV acceleration volt-
age, 12 nA beam current and 1 to 5 µm beam size
(details in Table S3, supp. mat.). The ZAF (atomic
number, absorption and fluorescence) correction pro-
cedurewas applied using the JEOLsoftware for quan-
titative analysis. The DLs range between 0.01 and 0.
04 wt% using the 2σ criterion (Batanova et al. 2018).

Trace element analysis. Trace element analysis of
allanite was performed at the Institute of Geological
Sciences (University of Bern) using laser ablation
inductively-coupled plasma mass spectrometry
(LA-ICP-MS), which consisted of a Geolas Pro
193 nm ArF excimer laser coupled to an Elan
DRC-e quadrupole ICP-MS. A He–H2 gas mixture
(1 and 0.008 L/min, respectively) was used as the
aerosol transport gas. Allanite trace element analyses
were performed with laser beam diameters of 16, 24
and 32 µm, frequencies of 9 and 7 Hz and energy
densities on the sample of 5.0 J/cm2. Sample analy-
ses were calibrated using GSD-1Gg and accuracy
was monitored using a reference glass NIST SRM

612 (Jochum et al. 2005, 2011). Data reduction
was performed using the SILLS software package
(Guillong et al. 2008) and LOD values obtained
with the method of Pettke et al. (2011).

Fluid characterization methods

Inductively-coupled plasma spectrometry.All recov-
ered solutions were stored using metal-free tubes
(from VWR). For an accurate quantification of
trace elements, measurements were performed by
ICP-MS using a Thermo Scientific XSERIES 2 spec-
trometer. Recovered solutions were diluted 3 times
with 2%HNO3 solution to a volume of 6 ml. Finally,
0.5 ml of an In solution was systematically added as
an internal standard to correct for the drift of the
ICP-MS. Collision cell technology (CCT) was used
for some elements (Ca, Fe andMn) in order to reduce
polyatomic interferences with 5% H2 in He gas.
Measurement quality was evaluated by duplicating
the measurement of standards that were analysed 5
times on the ICP-MS. Calculations to extract con-
centrations from the integration of peak signals
were performed off-line. Reproducibility depends
on the nature of the analysed element. It ranges
from 1% to 19% for the REEs and from 3% to
30% for other trace elements. The DLs are defined
as 3 times the average of the blank measurements.
All data below the DL were excluded. Because the
torch for ICP-MS was sheathed in quartz, the con-
centration of Si was then determined by atomic emis-
sion spectrometry (ICP-AES) using a Perkin Elmer
Optima 3000 DV ICP-AES. Solutions were diluted
5 times using a 2% HNO3 solution providing the
minimum analysable volume. The same HNO3 solu-
tion was used to prepare standards and blanks. The
analytical error for Si is 8%.

Capillary electrophoresis. The anionic content
(Cl−, SO4

2−, F−, PO4
3−, HCO3

−) in the recovered
solutions was quantified using a capillary electro-
phoresis (CE) system by WATERS®. The CE appa-
ratus was equipped with a fuse capillary (75 µm i.d.
× 60 cm total length) and a diode detector. The CE
was operated at 20°C and at a voltage of 20 kV.
Electrophoregrams were recorded with indirect
mode detection at 254 nm using an Hg lamp. The
background electrolyte (BGE) was composed of
4.6 mmol/LNa2CrO4 solution, 0.5 mmol/L
OFMOH™ from WATERS™ and an H3BO4 solu-
tion (pH = 8.0). Prior to each measurement series,
the capillary was conditioned by flushing with
1 mol/L NaOH and 0.1 mol/L NaOH (5 min each)
followed by a 10 min flush with deionized water
and a BGE solution (15 min flush). The capillary
was preconditioned prior to each measurement by
flushing the BGE for 1 min. All samples were mea-
sured in duplicate using hydrostatic injection mode.
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Results

Allanite alteration as a function
of the initial pH

The role of initial pH was investigated by time-series
experiments in order to evaluate, together with the
final alteration extent, the kinetics of the reaction.
The experiments were performed for an F-doped sys-
tem at a duration of between 15 and 180 days under
initial acidic and high-pH alkaline conditions
(Table 1).

The recovered experimental solids, characterized
by XRD, displayed alteration evidence with second-
ary phases in the run products (Fig. 1). The extent
of alteration was estimated on the basis of remaining
allanite in the recovered samples. The constancy of
the allanite composition between the final and initial
materials (Table S1 – Supp. Mat) attested to no sec-
ondary allanite/epidote precipitation. The reaction
progress was estimated from the allanite abundance.
The run products’ modal composition showed that
the kinetics and extent of alteration greatly varied
with the initial pH (Fig. 1). The alteration rate was
much higher in the high-pH alkaline system, with
65% alteration reached within the first 15 days and
a rapid stabilization at around 70–75% alteration
from 30 to 120 days. In contrast, the extent of alter-
ation in the acidic experiments was scarce after 15
days and only achieved 25% alteration for the longest
durations (120 and 180 days). However, under both
the acidic and high-pH alkaline conditions, with an
F-doped solution, the same mineral phases grew at

the expense of allanite (Fig. 1): analcime (Na-Al sili-
cate), hematite (Fe2O3), and REE-bearing carbonates
(Table 2). The REE-bearing carbonates, determined
fromXRDanalyses, changed depending on the initial
pH of the solution. They consisted of: (1) bastnäsite
(general formula: LREECO3F) and synchysite (gene-
ral formula: CaLREE(CO3)2F) under acidic condi-
tions; and (2) a burbankite-group mineral (BGM,
with general formula: (Na,Ca)3(Sr,Ba,Ce)3(CO3)5)
and REE-fluorocarbonates with parisite (general for-
mula: CaLREE2(CO3)2F2) associated with bastnäsite
andminor synchysite in the high-pH alkaline system.
Besides these phases, fluorite (CaF2) appeared in the
acidic experiments, while calcite (CaCO3), smectite
and minor nordstrandite (general formula: Al(OH)3)
crystallized in the high-pH alkaline system. High
REE contents up to 2 wt% and 8 wt% (REE +
Y)2O3 were measured in fluorite and calcite, respec-
tively (Table 2; Table S2 supp. mat.).

The microstructures of the recovered solids dif-
fered depending on the initial pH, which can be
attributed to the reaction progress. In acidic systems,
due to low alteration rate (15 days), the initial shape
of the allanite grains, characterized by typical con-
choidal edges, was mostly preserved while fluorite
and analcime crystals grew around allanite from
the bulk fluid (Fig. 2a). The allanite surface was
pitted and covered by smectite. At this stage,
REE-(fluoro)carbonates were restricted to inherited
fractures in the allanite. A higher reaction extent
(25%) in the acidic system (120 days) resulted in
alteration rims surrounding some of the allanite
grains. Their surfaces were characterized by a

Fig. 1. Evolution of the proportion of the starting material and run products, utilizing Rietveld refinement (in %) for
(a) initial acidic and (b) high-pH alkaline F-doped systems. The group of REE-carb (REE-carbonate minerals)
represents bastnäsite + synchysite in acidic system and parisite + bastnäsite + synchysite + the burbankite-group
mineral in the high-pH alkaline system. These REE-carbonate minerals were identified by X-ray diffraction (XRD)
analyses. Full lines represent the maximum allanite replacement in a state close to equilibrium. Numerical values are
presented in Table 1. Aln, allanite; Ana, analcime; Cal, calcite; Fl, fluorite; Hem, hematite; Nrd, nordstrandite; Sme,
smectite.
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pervasive sawtooth-shaped reaction front, highlight-
ing more extensive dissolution (Fig. 2b). Reaction
rims were sequentially composed of discontinuous
layers of hematite followed by nanocrystals with
the granular and acicular shape of REE-fluorocar-
bonates penetrating through the dissolving allanite
at the reaction front and filling newly-opened frac-
tures (Fig. 2c).

In the high-pH alkaline run products, the allanite
grain shape is preserved on the microscale, sur-
rounded by layers of complex microtextures. The
morphologies and textures described for the run
product from the 15-day experiment do not signifi-
cantly change compared with the longer duration
experiments. Allanite has penetrative reaction rims
that can reach up to 10 µm thick (Fig. 2d). They
were delimited by complex microstructures at the
reaction front, such as nanoscale etch pits or saw-
tooth surfaces (Fig. 2e). Close to the reaction front,
REE-fluorocarbonates also precipitated at the sur-
face, within the etch pits or in inherited microfrac-
tures, with nanogranular, acicular or prismatic
shapes (Fig. 2e). The submicron size of these phases
prevented quantitative chemical analyses by EMPA.

The allanite surface was overlain with a thin layer of
hematite crystals of around 10 to 500 nm in size.
Smectites were also ubiquitous and clearly identifi-
able by their fibrous (honeycomb) morphology and
platelet growth oriented towards the fluid. The
BGMs occur as microscale euhedral crystals that
randomly precipitated from the reactive bulk fluid
(decoupled from the allanite replacement products).
They are mainly prismatic and more or less elon-
gated with a size generally varying from c. 5 to
30 µm in size (Fig. 2f). The BGM crystals commonly
display a zonation with respect to the REE content
which is anti-correlated with respect to Ca (Fig.
S5, supp. mat.). They have a higher LREE content
than the initial allanite, but with Sm and Y below
the DL (Table 2). Calcite precipitates as aggregates
of euhedral crystals 10 to 20 microns in size or inter-
grown with relic allanite (Fig. 2f).

Allanite alteration as a function of ligands

To investigate the effects of ligands on the alteration
of allanite, experiments were run under the initial
acidic conditions with P-doped, S-doped and

Table 2. Microprobe selected analyses of major run products (wt%)

Analcime Calcite BGM Fluorite Anhydrite

System HCO3
− + F− CO2 + PO4

2− HCO3
− + F− HCO3

− + F− CO2 + F− CO2 + SO4
2−

Days 120 120 120 120 120 120 120 180 120
SiO2 49.1 49.0
Al2O3 24.5 24.1 0.22 0.32
FeO 0.09 0.13 0.23 0.32 0.54 0.09 0.21 0.10
CaO 51.2 53.0 21.08 6.07 66.35 67.05 41.75
Na2O 15.8 15.2 0.62 0.39 0.37 1.66 0.5 0.51 0.05
P2O5 0.15 0.12 0.14 0.18
SO3 47.47
F 0.30 0.18 0.57 48.02 47.75
La2O3 1.90 0.90 14.69 15.17 0.68 0.35 0.17
Ce2O3 4.13 2.30 23.51 30.52 1.20 0.69 0.51
Pr2O3 0.46 0.24 1.68 2.57 0.19 – 0.14
Nd2O3 1.16 0.60 3.56 6.35 0.23 0.12 0.16
Sm2O3
Gd2O3 0.13 0.21
Dy2O3 0.23
Y2O3 0.12 0.11 0.12
SrO 0.25 0.26 1.02 0.68 1.62 1.59 0.61
ThO2 0.09 0.15 0.84 0.90 0.27
PbO 0.13
Total* 89.50 88.66 60.63 58.27 67.63 64.37 99.41 98.68 90.94
∑(REE)† 0.13 7.99 4.16 43.68 54.60 2.42 1.17 0.97
La/Y n.d. n.d. 17.4 8.79 n.d. n.d. 6.02 n.d. n.d.
Ce/Ce*‡ n.d. n.d. 1.07 1.19 1.14 1.18 0.8 2.84 0.82

Notes: Values in italic (%) column are mean relative errors, and 2σ is the standard deviation; n.d. not determined.
*Total is corrected for –O = F2 values.
†∑REE refers to the sum of (REE + Y)2O3.
‡Ce/Ce* CeN/(LaN*PrN)1/2. Empty cells are concentrations below detection; n.d. not determined.
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Cl-doped solutions for 120 days (Table 1). Similar to
that observed for the pH, the reaction progress was
also significantly affected by the ligands (Fig. 3).
The most reactive system was the P-doped one,
which achieved 73% allanite alteration. This reaction
extent was similar to that seen in the F-doped system
under high-pH alkaline conditions (75% of reaction),
but much higher than that obtained under similar
acidic conditions (23% of reaction) over the same
duration (120 days). The S- and Cl-bearing systems
were less reactive compared with the others, with
less than 5% secondary minerals.

In the reactive P-doped experiments, analcime
and hematite were present in major proportions in
the recovered solid, as for the F-doped system.
Smectite was also an alteration product of allanite,
as in the high-pH alkaline system. The main differ-
ence between the P- and F-doped systems was the

nature of the mineral phases that accommodated
REEs and Ca, such as monazite (general formula:
LREEPO4, 21% of solid product) and hydroxyapa-
tite (general formula: Ca5(PO4)3OH, 18% of solid
product). The alteration microstructures were similar
to those previously described in the F-bearing sys-
tem. Allanite was largely affected by dissolution,
as illustrated by the numerous etch pits scattered
on the surface (Fig. 4a). Allanite alteration resulted
in thick reaction rims made up of a nanomixture of
monazite-hematite and hydroxylapatite with an
apparent microscale spatial distribution from the
reaction front towards the reactive fluid (Fig. 4b).
Submicron monazite crystals precipitated directly
at the interface with the allanite (Fig. 4c). Similar
to the F-doped systems, hematite occurred as a
thin, quasi-continuous corona around the allanite
grains. Finally, euhedral micrometric-sized grains

Fig. 2. Scanning electron microscopy images using backscattered electron (BSE) imaging of allanite and secondary
products from acidic (a, b and c) and high-pH alkaline (d, e and f) F-doped runs for different times. (a) Relatively
unaltered allanite with fluorite and analcime growing along the allanite grain rims. (b) Relatively unaltered allanite
(top left) with internal fractures filled by REE phases along with more reacted allanite (bottom right) with
sawtooth-shaped grain rims after 120 days. (c) Magnification of (b) showing reaction interface with allanite composed
of granular nanometric REE-fluorocarbonates replacing allanite. (d) Allanite grain displaying edge pitting with a
porosity that progresses anisotropically to the grain centre. Edges are rimmed by saponite whiskers, which probably
formed during quenching. (e) Detail of an allanite edge showing a sharp eroded surface rimmed by
REE-fluorocarbonates with a granular, prismatic and needle-like shape, along with hematite and saponite. Porous
cavities are filled with REE-fluorocarbonates. (f) Cluster of burbankite-group minerals with a large crystal of calcite
growing in the interstitial space between the minerals. Aln, allanite; Ana, analcime; Bgm, burbankite-group mineral;
Cal, calcite; Flr, fluorite; Hem, hematite; REE-FCb, REE-fluorocarbonates (bastnäsite, parisite, synchysite); Sap,
saponite; Sme, smectite.

Experimental allanite alteration
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of hydroxylapatite, mixed with smectite filaments
which probably formed during the quench, are seen
along the outer edge of the alteration rim (Fig. 4b,
c). Analcime remains the major alteration phase,
and takes the form of large grains embedding relict
allanite along the allanite reaction rims (Fig. 4a).

Recovered fluid chemistry

Beside solid product characterization, the fluid com-
position was also analysed for each experiment
(Table 3; Fig. 5). While the fluid compositions can
be modified by internal and external factors through
the course of the reaction (water consumption by
alteration products, permeability limits of the Teflon

reactors, quenching effects), the reproducibility of
the results supports the general qualitative signifi-
cance of the fluid chemistry dataset.

In time-series experiments, the final fluid compo-
sitions indicated that the experiments under high-pH
alkaline conditions were already in a steady-state
(approaching constant concentrations of all mea-
sured elements with time) after 15 days (Fig. 5b),
which is in agreement with the mineralogical results.
In the initially acidic system, elemental concentra-
tions of Ca, REE, Th and U evolved until reaching
a near plateau only after 120 days (Fig. 5a). At that
stage, Si, Al and Ca reached similar concentrations
in the F-doped acidic and high-pH alkaline systems,
whereas REEs, U, and Th were lower in the acidic

Fig. 3. Comparison of mineral modal compositions after 120 days for the F-doped high-pH alkaline systems and the
F-, P-, S- and Cl-doped systems (respectively shown in columns), which were identified by X-ray diffraction (XRD)
and Rietveld refinement (in %). Aln, allanite; Ana, analcime; Anh, anhydrite; Cal, calcite; Fl, fluorite; Hl, halite; Hap,
hydroxylapatite; Hem, hematite; Mnz, monazite; Nrd, nordstrandite; REE-Carb, REE-fluorocarbonates; Sme, smectite.

Fig. 4. Secondary electron (SE) and backscattered electron (BSE) images of allanite alteration in an acidic P-doped
system. (a) Typical allanite grain with eroded grain boundaries and with large crystals of analcime partially
embedding the other secondary minerals. (b) Continuous reaction front composed of monazite replacing allanite and a
thin (,200 nm) rim of hematite outlining the original shape of the allanite. Outwards from the reaction front is
rimmed by euhedral hydroxyapatite (Hap) that precipitated in the interstitial space between filaments of saponite
(Sap). (c) Detail from (b) showing that the abundance of the nanosize monazite increases in the vicinity of the eroded
allanite. Aln, allanite; Ana, analcime; Cal, calcite; Hem, hematite Mnz, monazite; Sme, smectite.
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Table 3. Composition of fluids after allanite batch experiments

Experimental set

System CO2 + F− NaHCO3 + F− CO2 + PO4
2− CO2 + SO4

2− CO2 + Cl−

Experiment B1015 B1030 B1060 B1120 B1180 B2015 B2030 B2060 B2120 B3P120 B3S120 B3Cl120
Days 15 30 60 120 180 15 30 60 120 120 120 120
mol/kg × 10−4

1 Si 38.0 15.8 13.1 16.8 16.0 19.4 22.3 25.4 43.0 62.1 14.9 27.4
Al 1.20 1.35 0.51 5.88 5.76 2.40 2.06 1.50 0.50 2.48 0.35 0.11
Fe 0.21 0.20 0.16 0.12 0.045
Ca 0.11 0.069 0.14 0.14 0.16 0.17 0.082 0.077
Respective ligands 950 976 869 668 598 1781 1661 1412 1211 1477 2877
HCO3

− 10 980 10 791 7132 6604 2489

mol/kg × 10−8

Y 4.34 0.20 140 175 227 297 4.85 0.26 1.27
La 0.25 0.40 4.49 1.51 30.3 24.8 41.6 52.9 15 4.90 2.88
Ce 0.07 0.25 0.35 6.48 5.28 81.4 73.5 94.2 75.1 8.04 1.92 0.93
Pr 0.033 0.48 0.23 9.50 11.3 12.5 14.8 1.14 0.27 0.25
Nd 1.97 0.52 37.2 45.6 49.1 55.6 5.23 0.94 4.26
Sm 0.24 0.037 9.26 11.4 11.8 12.7 0.44 0.04 0.19
Eu 0.21 1.69 2.10 2.22 2.59 0.36 0.02 0.20
Gd 0.45 0.077 9.80 12.1 13.8 15.3 0.76 0.06 0.25
Tb 0.0031 1.70 2.15 2.54 2.85 0.013 0.0022 0.0035
Dy 1.13 10.9 14.0 16.7 19.6 1.21 0.045 0.38
Ho 2.45 3.15 3.84 4.55
Er 2.25 8.89 11.7 13.5 16.6 2.15 0.073 0.67
Tm 1.64 2.12 2.33 2.59
Yb 3.26 13.6 17.6 17.6 20.2 2.67 0.094 1.05
Lu 2.69 3.47 3.31 3.59
Th 0.0077 0.033 0.24 0.24 349 216 304 193 0.30 0.025
U 16.0 18.1 4.89 8.76 12.4 2795 2972 2570 3120 6.54

Respective ligands refer to the anion initially used for the experiments (measured as F−, PO4
3−, SO4

2−, Cl−). Maximum analytical error is,4% for Si, La, Ce, Pr, Ho, Tm;,8% for Al, Fe, Eu, Lu, Y, Th; 9% for
U; ,15% for Nd, Sm, Yb; ,19% for Gd, Eu; 34% for Ca. Empty cells are concentrations below detection.
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system compared with the high-pH alkaline system
by 2 to 4 orders of magnitude.

In the P-doped system, which was the most reac-
tive system under acidic conditions, elemental con-
centrations are similar to the concentrations of the
F-doped in the acidic system at 120 days (Fig. 5c).
In the unreactive Cl- and S-doped systems, Si and
REE concentrations are comparable with those mea-
sured in the F- and P-doped systems under acidic
conditions. The other elements were generally at
lower concentrations.

In terms of REEs, the chondrite-normalized pat-
terns plot relatively flat for the high-pH alkaline sys-
tems (Fig. 6). In acidic fluids, patterns plot also
relatively flat but with a slight depletion in Sm, Gd
and Dy, with no dependence on the ligand.

Discussion

Allanite alteration mechanisms

In the batch experiment runs (Table 1), the alteration
of allanite ranges from a limited (,5%) up to an
extensive (77%)degree, dependingon thefluid chem-
istry after 120 days. The pH has the first effect on the
alteration of allanite, as the kinetics for the high-pH
alkaline system are fastest (65%) after 15 days, and
the more advanced (70–75%) after 120 days in the
two time-series experiment runs conducted in an
F-doped system. Under acidic conditions, the nature

of the ligand significantly affects the extent of alter-
ation. The presence of P enhances the allanite alter-
ability, reaching 73% of the reaction rate after 120
days, while allanite reactivity is minor in the Cl- or
S-doped systems (,5%). F-doped systems display
moderate alteration at the same duration (25%).

Fig. 5. Major elements, REE and actinide concentrations (log) in experimental fluids for the time-series F-doped
experiments in the acidic system (a), high-pH alkaline system (b), and in the 120 day experiments for the P-, S- and
Cl-doped systems (c).

Fig. 6. Chondrite-normalized REE spectra of fluids
after 120 days from the slightly acidic, F-doped, P-
doped, S- doped, Cl-doped and time-series, high-pH
alkaline, F-doped experiments. The HREEs with odd
numbers are below the detection limits (DLs) or have
been removed from the diagram because of artificial
anomalies due to being close to the DLs (Table 1). The
lanthanide tetrad effect is discernible within the LREEs
for the slightly acid experiments (dashed lines).

A. Denys et al.
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Higher allanite reactivity in a high-pH alkaline fluid
shows that high-pH fluids efficiently promote silicate
dissolution rates, while dissolution is more limited in
near neutral fluids (Hellmann 1994). This effect is
also demonstrated for epidote group minerals (Rose
1991). Phosphorus seems to have a similar effect on
allanite, though with a lower extent of alteration.

In the most reactive systems (high-pH alkaline
and P-doped conditions), the alteration of allanite
is promoted by increasing dissolution coupled with
the precipitation of other minerals. On the one
hand, dissolution can be promoted due to a solubility
change for the dissolving elements in the bulk solu-
tion, by modifying element complexation, the con-
centration in the solution and the chemical affinity
per the dissolution reaction between allanite and
the fluid. On the other hand, the mineral microstruc-
tures evidenced here also point to the crucial role of
secondary precipitation on the alteration rate. Alter-
ation microstructures from highly altered experiment
products show well-developed dissolution features
(etch pits, fractures, porosity) with a penetrative
replacement by an alteration rim made up of second-
ary minerals with a complex mineralogical zonation.
General preservation of the initial pristine shape of
allanite suggests a mechanism of replacement by
interfacially-coupled dissolution-precipitation (Put-
nis 2002; Putnis and Putnis 2007; Harlov et al.
2011; Hellmann et al. 2012), which indicate disequi-
librium between the solid and the fluid (Putnis 2009;
Ruiz-Agudo et al. 2014). Such alteration processes
can lead to an apparent incongruent dissolution due
to a preferential precipitation of low solubility
phases (with different composition than the altered
phase) at the alteration interface (Ruiz-Agudo et al.
2012). Such apparent incongruent dissolution has
already been demonstrated for epidote dissolution
(Kalinowski et al. 1998), and seems also to apply
here to allanite alteration as seen by the mineralogi-
cal gradation from the reaction front to the bulk sol-
ution. In the reaction rim, the precipitation of
submicron, low-solubility secondary phases takes
in elements from the solution and changes their con-
centration at the reaction interface. This is the case
for hematite, which nucleates as a thin rim at the
interface with the allanite. This is particularly true
for REE mineral phases (REE-fluorocarbonates or
monazite, depending on the ligand), which also
occur as a discontinuous rim of nanoscale crystallites
propagating anisotropically inwards into the pristine
grain and along fractures in the allanite. The growth
of other main phases with a higher solubility in the
solution, e.g. analcime, fluorite and calcite, is spa-
tially decoupled from the alteration interface with
precipitation from the bulk solution as larger euhe-
dral crystals. Such precipitation from the bulk fluid
away from the rim of the dissolving mineral have
been described in other alkaline systems (Lafay

et al. 2014, 2018). In the batch experiment runs,
the preferential precipitation of REE phases at the
reaction front is proposed to efficiently maintain sig-
nificant dissolution rates by producing steep concen-
tration gradients in the fluids close to the reactive
surface, which act to renew the solutions (Frugier
et al. 2008; Ruiz-Agudo et al. 2016).

Coupled with the chemical gradient at the inter-
face, the precipitation of REE mineral phases will
further strongly modify the geometry of the reaction
front. The complex microstructures at the reaction
interface, with etch pits, indentations and secondary
fractures, are the result of reaction-induced fractur-
ing due to molar volume change and the force of
crystallization during the replacement of allanite by
secondary phases (e.g. Jamtveit et al. 2009; Lafay
et al. 2018). This increase of the reactive surface
also enhances allanite dissolution.

In the two non-reactive systems (Cl- and S-
doped), there was limited precipitation of secondary
phases (,5%). In batch experiment runs, this drop in
the dissolution rates can occur when element concen-
trations progressively approach saturation in the
fluid or when precipitation of an inert passivation
layer isolates the reacting mineral from the reactive
fluid (Montes-Hernandez et al. 2012). In unreactive
systems, secondary precipitation observed at the
grain surface is sufficiently low such that allanite
remains accessible to the fluid throughout the exper-
iment runs. In contrast, concentrations in fluids sim-
ilar to those of reactive systems indicate that they
reach conditions approaching saturation. Since pre-
cipitation of analcime and hematite is not chemically
restricted, the only limiting factor here appears to
concern the stability of the REE phases.

In the investigated reactive systems, the precipi-
tation of secondary REE phases is thus proposed to
be the main driving force behind allanite alteration
by lowering the activities of REEs in the interfacial
fluid. In the absence of efficient REE mineral precip-
itation (Cl- and S-doped) at the allanite interface,
‘steady state’ concentrations measured in the bulk
fluid are assumed to be more readily reached, thus
decreasing reaction rates. Therefore, allanite alter-
ation remains low. These results are in good agree-
ment with natural observations. The secondary,
experimental REE mineral phases, i.e. REE-fluoro-
carbonates and/or REE-phosphates, are typical of
low-temperature alteration products (e.g. Berger
et al. 2008; Ondrejka et al. 2018).

REEs, Th, and U mobility and fractionation
during allanite alteration

In all reactive systems, comparison between a simple
mass balance calculation from the low REE concen-
trations in the recovered fluid and the allanite compo-
sition and alteration rates indicate that the REEs

Experimental allanite alteration
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released during alteration are mostly in secondary
phases. An allanite alteration of 70% would provide
100 µmol of the REE released in high-pH alkaline
experiment runs. However, the REE content in the
final fluids are 4 orders of magnitude below. The
main REE minerals (REE-carbonates or REE-
phosphates identified by XRD) occur as submicronic
crystals in the alteration rim, preventing accurate
determination of their REE content. Based on the
theoretical compositions of REE-fluorocarbonates
and monazite, along with their XRD modal abun-
dance, rough mass balance calculations confirm
that they are a major sink for the REEs released by
allanite. In the P-doped system, the hydroxylapatite
grains are also too small to determine their REE con-
tent, though it could be up to a few wt% (Budzyń
et al. 2017).

While the composition of secondary phases in the
altered rim cannot be analysed precisely for their
REE content, minerals precipitating from the bulk
fluid are large enough for evaluating their REE con-
tent by EPMA. In F-doped systems, fluorite repre-
sents 25% of the secondary products and can
incorporate up to 1–2 wt% REE2O3. The REE con-
tent in fluorite has been extensively studied in hydro-
thermal systems (Möller et al. 1998; Schwinn and
Markl 2005; Schönenberger et al. 2008; Gob et al.
2011), in economical REE deposits, such as the
Bayan Obo Complex (Xu et al. 2012) or by thermo-
dynamic modelling (Kolonin and Shironosova
2007). It shows that REEs in fluorite, while
extremely variable, can reach up to .10 wt% in
yttrofluorite (Pekov et al. 2009). Although a coupled
substitution involving Na is often considered pre-
ponderant for incorporating the REEs in fluorite,
i.e. REE3+ + Na+ ↔ 2 Ca2+ (Möller et al. 1998),
there is no real correlation between the REE and
Na contents in the fluorite from these experiments,
despite the high Na concentrations. The BGM (iden-
tified from XRD) precipitating from the bulk fluid
also accommodates significant REEs, but with Na
concentrations that are significantly lower compared
with burbankite sensu stricto (Belovitskaya and
Pekov 2004). The BGM grains are zoned with a typ-
ical hourglass sector zoning, suggesting crystallo-
graphic control on REE incorporation (Fig. 2f).
Integration of the REEs is directly correlated to the
size and geometry of the crystallographic sites,
which favours the LREEs in calcic minerals such
as tourmaline (van Hinsberg et al. 2010). Burbankite
is a hydrothermal mineral encountered in alkaline
pegmatites and associated carbonatites (Zaitsev
et al. 2002). In experiments, the precipitation of
BGMs is probably favoured by the Na concentration
in the fluid. Finally, the REE concentrations in the
calcite are considerably higher than those normally
encountered in nature (Stipp et al. 2006) but are ther-
modynamically stable (Rimstidt et al. 1998), as has

been experimentally demonstrated (Toyama and
Terakado 2014; Gabitov et al. 2017). In calcite,
two coupled substitution mechanisms are proposed
(Perry and Gysi 2018): REE3+ + Na+ ↔ 2Ca2+

and 2REE3+ + □ ↔ 3Ca2+ (square represents site
vacancies). The composition of the calcite produced
in these experiments indicates that both mechanisms
occur under the experimental conditions of this study
(Fig. S5, supp. mat.).

REE fractionation between fluid and solid

Though the REEs are mainly stored in secondary
phases, minor REE concentrations have been recov-
ered in the fluids. Though precise quantitative fluid
concentrations are limited by the batch experimental
setup, our qualitative results clearly indicate a signif-
icant difference in REE fractionation between the
solid and the fluid, whatever the pH and the com-
plexing ligands. Experimental fluids display rela-
tively flat chondrite-normalized REE spectra,
indicating that the experimental alteration of allanite
ultimately produces a fluid enriched in HREEs rela-
tive to the initial LREE-rich allanite composition.
This implies in turn the preferential fractionation of
LREEs over HREEs in the secondary mineral precip-
itates relative to the fluid. This is in good agreement
with the limited incorporation of HREEs in fluoro-
carbonates and monazite, as demonstrated for T ,
450°C (Heinrich et al. 1997; Poitrasson et al.
2000; Janots et al. 2008; Budzyn ́ et al. 2010, 2017;
Grand’Homme et al. 2018). Also, secondary miner-
als that precipitate from the bulk fluid (calcite, fluo-
rite, BGM) are enriched in LREEs over HREEs but
with lower La/Y compared with allanite, again sup-
porting the fractionation of the LREEs over the
HREEs in the bulk fluid compared with fluid at the
reaction front. In these secondary mineral phases,
the Y values are typically at the same level as in
allanite, which suggests that the HREEs are more
mobile compared with the LREEs, as seen in numer-
ous natural environments, e.g. during monazite alter-
ation (Hentschel et al. 2020).

The fluid compositions measured in this study
have numerous implications for REE deposits.
Here the flat or gently incurved REE-normalized pat-
tern indicates that REEs are not released congru-
ently, but that speciation in the fluids or
precipitation of secondary products favours HREE
fractionation over LREEs in the fluid compared
with the initial allanite composition.

Th and U behaviour during allanite alteration

Actinides seem to mostly partition into the fluid
as opposed to secondary minerals. Simplified quali-
tative calculations show that virtually all the U
released by allanite accumulates in the fluid under

A. Denys et al.
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these conditions. Actinide concentrations are higher
in the high-pH alkaline system (with higher carbon-
ate activities) than in the acidic system. This agrees
well with studies that show that the solubility of acti-
nides increases with the concentration of the aqueous
carbonate or phosphate ligands (Rai et al. 1994; San-
dino and Bruno 1998). Recent studies also show that
actinides can be highly mobile in the presence of
ligands such as S-, Cl- or F-complexes for tempera-
tures close to 200°C (Nisbet et al. 2018, 2019; Mig-
disov et al. 2019). In the experimental runs under
initial acidic conditions, U release is at least 1 to 2
orders of magnitude lower than that under high-pH
alkaline conditions. Regardless of the chemical sys-
tem, Th is systematically lower in the fluid compared
with U, while it is higher in the starting allanite, indi-
cating U/Th fractionation during allanite alteration.
According to Rai et al. (1994), ThO2 solubility is
higher than that of UO2, suggesting that tetravalent
U is likely oxidized in its hexavalent state during
the allanite alteration reaction. Preferential incorpo-
ration of tetravalent Th in secondary REE mineral
phases may in turn enhance Th/U fractionation
between the fluid and secondary products, as
observed in natural monazite and allanite precipi-
tated from hydrothermal systems (Janots et al. 2012).

Conclusions

Allanite has a complex composition and its experi-
mental alteration under low temperature conditions
results in a high diversity of mineralogical assem-
blages and microstructures. Allanite can be highly
reactive in certain fluids, reaching more than 75%
of alteration at 200°C and Psa ≈ 16 bar, after only
15 days. The pH and the nature of the complexing
ligand added to the fluid will strongly affect the alter-
ation rate of the allanite, with the high-pH alkaline
system being the most reactive. In carbonate-bearing
fluids, F and P will promote allanite alteration, while
allanite shows negligible alteration in the presence of
Cl and S. The main driving force behind the alter-
ation of allanite resides in the precipitation at a reac-
tive front of secondary REE minerals, whose
chemistry depends on the complexing ligands.
These precipitated minerals maintain a local disequi-
librium close to the reaction interface between the
fluid and the solid, thus sustaining allanite dissolu-
tion. Though REEs are mostly stored in the second-
ary mineral phases, there is a preferential
fractionation of the LREEs over the HREEs into
the solid compared with the fluid, while U is strongly
partitioned into the fluid.
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