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Abstract.  Quantitative compositional mapping is a key technique for imaging solids and, 
therefore, for trying to understand compositional zoning systematics in a broad range of 
geological materials.  Compositional mapping requires an adapted analytical method for efficient 
data collection, a post-processing calibration stage to obtain elemental concentration values, and 
specific computer tools for exploring and visualising the data.  In this contribution, we describe 
optimal analytical conditions, possible physical limitations and data reduction strategies for 
compositional maps of major, minor and trace elements obtained by electron probe 
microanalysis (EPMA) and laser ablation inductively-coupled plasma mass spectrometry 
(LA-ICP-MS).  Data reduction is performed using the computer software XMAPTOOLS, which 
incorporates a large variety of options and tools for data processing, data calibration and data 
visualisation based on single and multi-channel maps or via binary, ternary and spider diagrams. 

1.  Introduction 
Rock samples typically exhibit complex textures, mineral distributions and/or compositional zoning 
requiring chemical analysis of major, minor and trace elements over mm- to cm-sized areas.  This 
‘natural constraint’ fostered the development of analytical techniques [1-4] and software solutions [5-9] 
for obtaining maps of element concentration in solid geological materials.  The two most popular 
scientific techniques for compositional mapping are electron probe microanalysis (EPMA) for major to 
minor elements and laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for 
trace elements.  In practice, these two mapping techniques have both advantages and disadvantages – 
they are complementary rather than substitutes for one another [10].  As we shall demonstrate in the 
following, the major advantage of EPMA lies in its high spatial resolution, in the range of 1 - 10 µm3, 
whereas LA-ICP-MS analyses involve much larger analytical volumes (> 100 µm3) but with the power 
of detecting small compositional variations of critical trace elements at the ppm level.  However, both 
techniques require specific data reduction schemes for data correction, calibration and visualisation.  
In this study, we present recent improvements of XMAPTOOLS [6, 11] (available via 
https://www.xmaptools.com), an advanced software toolbox especially designed to achieve optimum 
workflow and feature extraction from compositional maps of rock samples.  This software solution can 
readily handle maps obtained from a large variety of instruments including both EPMA and LA-ICP-MS 
(e.g., [6, 12]). 
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Quantitative compositional mapping by EPMA has become a routine technique in many laboratories 
worldwide.  It requires the acquisition of X-ray maps (i.e., raw data not corrected for background or 
matrix effects) measured at specific X-ray emission lines and a post-collection calibration stage called 
analytical standardisation to derive fully quantitative data of element concentrations.  The calibration 
can be performed either based on an empirical or semi-empirical correction schemes [1-3] or against 
internal standards assuming no matrix effects [4].  The advantages and limits of each strategy are 
discussed in Lanari et al. [6].  The internal standardisation procedure implemented in XMAPTOOLS [11] 
requires high-precision spot analyses of every mineral phase to be calibrated.  This technique was 
improved by adding a pseudo-background correction [6]. 

Quantitative compositional mapping of trace elements and isotopes by LA-ICP-MS is catching up.  
It started with the seminal study of Woodhead et al. [13] and has improved at a fast rate in the past 
10 years.  Mapping by LA-ICP-MS involves the acquisition of successive raster images of the focussed 
laser beam.  Each acquisition line is calibrated using a standard reference glass and a known element 
concentration as internal standard.  The calibrated data are then stitched together to form compositional 
maps of trace element distributions.  The calibration is usually performed using the modules available 
within the commercial software IOLITE [14-16], whereas subsequent image processing and data 
visualisation is easier and more flexible if done with XMAPTOOLS [12]. 
 
2.  Analytical conditions 
This section briefly outlines some important aspects of each analytical procedure along with 
recommended instrument operating conditions.  Common artefacts affecting the spatial and chemical 
resolutions that were not investigated in previous studies (e.g., [4, 6, 11, 12]) are further discussed. 
 
2.1.  Quantitative compositional mapping by EPMA 
A standard analytical setup for quantitative compositional mapping of silicates and oxides by EPMA is 
presented in Table 1.  This setup is optimised for modern EPMA instruments equipped with 
five wavelength-dispersive X-ray spectrometers (WDS) and a single energy-dispersive X-ray 
spectrometer (EDS).  The final image resolution is defined according to the total number of pixels of a 
map: low resolution for an image containing less than 150,000 pixels; medium resolution between 
150,000 and 500,000 pixels; and high resolution above 500,000 pixels.  The area of interest on the 
specimen is scanned via mechanical beam tracking mode, i.e., by moving the sample under a static 
electron beam using a high-precision computer-controlled x-y-z stage.  In practice, the accelerating 
voltage of the electron beam is fixed at 15 keV, as it is for ‘typical’ spot analyses.  The specimen current, 
measured at the Faraday cup, is increased up to at least 100 nA to compensate the short dwell times 
(Table 1).  The characteristic X-ray emission caused by beam-specimen interaction is continuously 
analysed using both WDS and EDS spectrometers, resulting in the acquisition of 15 to 20 elemental 
maps in two acquisitions (as only five elements can be measured by WDS, the area is often scanned 
twice).  The measurement time for a single area of interest takes between one night and few days, 
depending on the image resolution and the dwell time. 

Two effects are further discussed in the following: (1) the size of the interaction volume, which can 
result in overlapping effects or under-sampling of a specific mineral and (2) beam damage during 
analysis.  Other potential artefacts such as secondary fluorescence effects, thermal or beam current 
instability, spectrometer focus and surface irregularities are discussed in Lanari et al. [6]. 
 
2.1.1.  Interaction volume and spatial resolution.  In compositional mapping by EPMA, the spatial 
resolution is determined by the spacing of spot measurements and the X-ray excitation volume of the 
electron beam.  The pixel size dx in the final image is equal to the distance between two spots.  Any 
interaction volume larger than dx results in overlapping, increasing the number of mixed pixels, which  
 
  



EMAS 2019

IOP Conf. Series: Materials Science and Engineering 891 (2020) 012016

IOP Publishing

doi:10.1088/1757-899X/891/1/012016

3

Table 1.  Standard analytical setup for quantitative compositional mapping by EPMA. 
 

 Setup 1 (medium resolution) Setup 2 (high resolution) 

Accelerating voltage (keV) 15 
Beam current (nA) 100 (eventually up to 500) 
Map size in pixels (# pixels) 500 × 500 (250,000) 1,000 × 1,000 (1,000,000) 
Step size (µm) 1 - 40 
Map surface (mm2) 0.25 - 400 1 - 1,600 
Dwell time (ms) 100 - 300 60 - 200 
Map acquisitions  2 

# elements WDS 
10 (e.g., Si-Kα, Ti-Kα, Al-Kα, Fe-Kα, Mn-Kα, Mg-Kα, Ca-Kα, 

Na-Kα, K-Kα, Cr-Kα/Ni-Kα) 
# elements EDS 5 - 10 (e.g., P-Kα, S-Kα, Zr-Kα, Ce-Lα, La-Lα, etc.) 
Mapping time (h) 14 - 42 33 - 112 

 
 
are pixels having a mixed composition between two or more phases.  In contrast, any interaction volume 
smaller than dx results in under sampling and may cause small phases to be missed.  It is, therefore, 
critical to quantitatively evaluate the size of the excitation volume for a large variety of minerals. 

Electron-specimen interaction volumes were investigated using a Monte Carlo model and the 
computer programme CASINO 2.41 [17] for a set of 14 common rock-forming minerals including 
garnet (almandine ρ = 4.19 g.cm-3; Z = 15.6), clinopyroxene (omphacite ρ = 3.34 g.cm-3; Z = 14.6), 
white mica (muscovite ρ = 2.82 g.cm-3; Z = 11.32), feldspar (albite ρ = 2.62 g.cm-3; Z = 11.73), 
amphibole (glaucophane ρ = 3.34 g.cm-3; Z = 10.6), calcite (ρ = 2.71 g.cm-3; Z = 12.6), olivine (forsterite 
ρ = 3.27 g.cm-3; Z = 10.6; fayalite ρ = 4.39 g.cm-3; Z = 18.7), epidote (zoizite ρ = 3.30 g.cm-3; Z = 12.1), 
chlorite (clinochlore ρ = 2.65 g.cm-3; Z = 12.2), kyanite (ρ = 3.61 g.cm-3; Z = 10.7), magnetite 
(ρ = 5.15 g.cm-3; Z = 21.0), quartz (ρ = 2.62 g.cm-3; Z = 10.8), and orthopyroxene (ferrosilite 
ρ = 3.95 g.cm-3; Z = 14.2).  The accelerating voltage and beam diameter were kept constant at 15 keV 
and 1 µm.  A selection of four representative cases is presented in Fig. 1.  The maximum diameter of 
the interaction volume d was estimated for each mineral from the trajectories of 10,000 simulations 
using a home-made routine defining a 95 % confidence interval of successive layers (cylinder shape) 
with a thickness of 0.2 µm between 0 and 2 µm depth and 0.5 µm below 2 µm depth.  This maximum 
diameter of the interaction volume decreases with increasing mean atomic number Z and density ρ (unit 
g.cm-3) of the target material (Fig. 2).  This trend can be reproduced using the following relation: 
 
   d = 4.034 exp(-0.02139 Zρ2 )+1.548 exp(-0.006457 Zρ2)     (1) 
 

This equation can be used for approximating a first order maximum diameter of interaction volume 
in common silicates and oxides at 15 keV and 1 µm beam diameter and may, therefore, assist in the 
interpretation of compositional maps.  This technique was implemented in XMAPTOOLS 3.0.1; 
two application examples based on published datasets are presented in Fig. 3. 

The purpose of the first dataset was to derive local bulk compositions to be used in thermodynamic 
models [18].  An area of 12.3 mm × 12.3 mm was analysed with a step size of 12 µm resulting in an 
image size of 1024 × 1024 pixels corresponding to 1,048,567 fully quantitative analyses.  Only a small 
portion of this map was re-investigated here (Fig. 3a).  The major drawback of this setup is that the 
electron-specimen interaction volume is much smaller than the pixel size (Figs. 3a to 3c).  The resulting 
under sampling effect is strong as the analysed pseudo-surface ranges between 1 % (garnet) and 
5 % (plagioclase) of the pixel surface in the final image (Fig. 3c).  In this example, the average grain  
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Figure 1.  Illustration of possible electron-specimen interaction in four rock-forming minerals covering 
a broad spectrum of mean atomic number (Z) and density (ρ).  A total of 10,000 simulations were 
performed for each mineral using the programme CASINO 2.41 (see text), but only a selection of 
1,000 trajectories is shown in this figure.  The size of the excitation volume is increasing with decreasing 
values of Z and ρ as also shown by Eq. (1).  Colours show the energy of the electron (in keV).  The black 
circle shows the beam size at the sample surface. 
 
 

Figure 2.  Diameter of electron-
specimen interaction volume as a 
function of a matrix parameter m 
defined as the product of the mean 
atomic number (Z) and the square of 
the density (ρ2) of the material.  
A bi-exponential model corresponding 
to the sum of two exponential 
functions was used for fitting 
(see Eq. (1)).  The uncertainty on the 
value of d obtained by the Monte Carlo 
technique was arbitrary fixed to 10 %.  
Note that these data points were 
generated for an accelerating voltage 
of 15 keV and a spot size of 1 µm. 
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Figure 3.  Possible effects of the pixel size (dx) on the spatial resolution of X-ray maps with a beam size 
of 1 µm.  a) Small area of a CaO map (in wt%) with a step size of 12 µm obtained for a high-grade 
metamorphic rock from the Central Himalaya (modified from [18]).  b) Image with circle pixels 
representing the electron-specimen interaction volume (see Eq. 1).  Garnet has a smaller interaction 
volume than quartz (Fig. 1).  c) Detailed view illustrating the under sampling effect.  The numbers 
correspond to the diameter of the interaction volume (in µm) calculated for a specific pixel.  d) Small 
area of a Na2O map (in wt%) with a step size of 1 µm obtained for an eclogite from the NW Himalaya 
(modified from [21]).  e) Image with circle pixels representing the electron-specimen interaction 
volume.  f) Detailed view illustrating the overlapping effect.  The numbers correspond to the diameter 
of the interaction volume (in µm) calculated for a specific pixel.  Abbreviations: bt - biotite; 
pl - plagioclase; qz - quartz; grt - garnet; cpx   clinopyroxene; amp - amphibole. 
 
 
size is much larger than the step size and under sampling does not affect significantly the local bulk 
composition estimates.  However, small phases (5 - 10 µm width) might not be analysed with this setup.  
Increasing the beam diameter to the same value of the step size improves the detection of small phases 
(e.g., [19, 20]), but significantly increases the number of mixed pixels and is, therefore, less suitable for 
quantitative analysis of zoned materials. 

The second dataset shows an opposite case in which the electron-specimen interaction volume is 
larger than the pixel size (Figs. 3d to 3f).  An area of 0.52 mm × 0.67 mm was analysed with a step size 
of 1 µm corresponding to 348,400 fully quantitative analyses [21].  Over sampling increases 
significantly the number of mixed pixels.  In Fig. 3c, only one pixel shows the true composition of Na2O 
in plagioclase, whereas a two-pixel rim exhibits mixed compositions towards amphibole or 
clinopyroxene.  The degree of over sampling ranges between 200 % for clinopyroxene (cpx2) and 400 % 
for plagioclase.  Mixed pixels are the main source of misclassification and are challenging to calibrate.  
These two examples show that a good compromise for the analysis of geological materials is a step size 
of ~2 µm. 
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2.1.2.  Beam damage.  The electron beam exposure produces heat over time and this heat can drive 
element diffusion in the target material.  In addition, the trapping of electrons can generate an electric 
field within the sample and cause migration of positive ions toward a region of negative charge located 
outside of the analysis volume.  These effects known as beam damage can significantly affect the content 
and distribution of mobile elements during the acquisition of spot analyses and mapping.  Beam-induced 
changes in composition generally cause the X-ray intensity of mobile elements such as Na, Ca and K to 
decrease (diffusion out) and heavier element to slightly increase due to changes in density and the 
absorption behaviour of the specimen. 

A meta-quartzite from the Glacier-Rafray Klippe in the Western Alps [22] was used to illustrate the 
possible effects of sample alteration during mapping under an electron beam with high-current 
conditions.  A small area of 80 × 120 µm2 containing albite, muscovite and quartz was mapped five 
times (two acquisitions each corresponding to a total of 10 scans) at the Institute of Geological Sciences 
of the University of Bern using a JEOL-820 Superprobe instrument, an accelerating voltage of 15 keV, 
a beam current of 200 nA, a beam size of 1 µm and 200 ms dwell time.  The series of X-ray maps for 
Na-, K- and Al-Kα lines uncorrected for background are shown in Fig. 4.  The mobile elements are 
affected by beam damage.  In albite, between 5 and 35 % of the total Na-Kα counts were lost after 
two scans (Fig. 4b), this figure rises up to > 90 % after 9 scans (Fig. 4e).  Although the original 
distribution of Na in albite was homogenous, this is not the case after beam damage demonstrating that 
diffusion was not homogenous throughout.  A moderate amount of Na is preserved in bright spots 
5 µm thick (Figs. 4c to 4e).  In muscovite, K is more resilient to diffusion under the high-current electron 
beam and the K-Kα signal experienced only < 10 % count loss after two scans (Fig. 4g) and 50 - 60 % 
after 9 scans (Fig. 4j).  In this case, the compositional zoning of muscovite is preserved (Figs. 4f and 
4e).  It is important to notice that in plagioclase, Al-Kα count rate increases up to 10 % in the areas with 
high Na diffusion (e.g., between Fig. 4k and Fig. 4o). 

This example shows that beam damage can significantly affect the count rates obtained during 
mapping.  Therefore, mobile elements (Na, K, Ca) have to be measured during the first pass of the beam 
over the mapped area and after the acquisition of spot analyses for calibration.  It is also important to 
notice that beam damage caused by spot analyses can result in a significant overestimation in the 
concentration of the element after calibration. 
 
2.2.  Quantitative compositional mapping by LA-ICP-MS 
A standard analytical setup for quantitative compositional mapping of silicates such as garnet by 
LA-ICP-MS is presented in Table 2.  This setup is optimized for a 193 nm exciter laser coupled to a 
quadrupole ICP-MS.  Mapping can be performed on standard polished thin sections or epoxy mounts.  
The area of interest is scanned using parallel rasters analysed across the sample surface.  A single raster 
analysis is preceded by 20 - 30 s background analysis and a pre-ablation stage with larger laser beam 
size followed by 10 s pre-washout.  The pre-ablation aims to minimise re-deposition effects.  Standards 
(including standard reference materials such as glasses SRM610 and SRM612) are analysed at the start 
and end of each mapping run and every 0.5 to 1 h during mapping.  The measurement time for a single 
area of interest takes between few hours and few days, depending on the size of the area (Table 2). 
 
3.   Data reduction using XMAPTOOLS 
This section briefly summarises the main workflow procedures implemented in XMAPTOOLS (see also 
[6, 11]). 
 
3.1.  Workflow for EPMA data 
Step 1 – Importing raw data and corrections.  Corrections applied to X-ray maps include a dead time 
correction for deriving true count rates, correction for intensity deviations caused by sample surface 
topography and/or time-dependent drift.  The corrections applied to the spot analyses (which are used 
as internal standard) include the elimination of mixed compositions and the adjustment of position 
(caused by sample displacement during the analysis) based on statistical criteria.  
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Figure 4.  Beam damage effects in albite and muscovite from a meta-quartzite (Glacier-Rafray Klippe, 
Western Alps).  The count rates (unit counts per second) of mobile elements Na and K in albite and 
muscovite progressively decrease with time (from left to right) because of beam damage.  Note that the 
count rates of Al in both plagioclase and muscovite are increasing from left to right.  Mineral 
abbreviations: ab - albite; ms - muscovite; qz - quartz. 
 
 
Table 2.  Standard analytical setup for quantitative compositional mapping of garnet by LA-ICP-MS. 

 
 Setup 1 (small 

resolution) 
Setup 2 (medium 

resolution) 
Laser wavelength (nm) 193 
Fluence (energy density, J.cm-2) 5 - 7 
Repetition rate (Hz) 10 
Sampling mode rastering 
Carrier and make-up gases (L.min-1) He (0.5 - 0.7) and Ar (0.9 L.min-1) 
Map size in pixels (# pixels) 100 × 100 (10,000) 300 × 300 (90,000) 
Laser spot diameter (µm) 16 - 24 
Map surface (mm2) 1.6 × 1.6 4.8 × 4.8 
Scan speed (µm.s-1) 22 - 30 
Dwell time (ms) (elements) 10 - 20 ms (Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy … 
 … Ho, Er, Tm, Lu, Th, U) 
 5 - 10 ms (Na, Mg, Si, P, K, Ca, Ti, Cr, Mn, Fe) 
Total sweep time (s) 0.30 - 0.5 
Mapping time (h) 5 - 7 24 - 36 
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Step 2 – Multi-channel classification (and manual phase identification).  An automated technique based 
upon the K-means algorithm is implemented in XMAPTOOLS.  Alternatively, a step-by-step manual 
classification can be performed using the modules BINARY or TRIPLOT.  Individual masks are created 
from a range of composition defined graphically [11].  An example of manual classification is shown in 
Fig. 5.  Four masks were generated from the binary Mg versus Al.  This manual procedure allows the 
mixed pixels to be excluded (see grey points in Fig. 5a and the corresponding black pixels in Fig. 5c).  
Excluding mixed pixels is important for obtaining high quality chemical images, such as maps of 
structural formulas.  An automated algorithm eliminating the pixels located between the different masks 
is also provided in XMAPTOOLS (BRC correction, see [6]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Manual classification in XMAPTOOLS via the BINARY module using a compositional map 
of a low-temperature high-pressure metasediment from the Western Alps (Briançonnais).  a) Binary 
diagram Mg versus Al (unit: counts per second); each point corresponds to the composition of a single 
pixel.  Selection of four groups using the option ‘multi-group free shape’.  The grey pixels are mixed 
pixels and are not classified in this example.  b) Density map of the binary diagram shown in (a).  c) Map 
showing the spatial distribution of the pixels of each group selected in (a).  Abbreviations: chl - chlorite; 
qz - quartz; phg - phengite; ab   albite. 
 
 
Step 3 – Analytical standardisation.  The module STANDARDIZATION assists the user for the 
calibration of the elements of each phase.  An automated routine uses the variability of the mass 
concentration of the spot analyses to fit the slope of the calibration curve and approximate the 
background intensity (see Fig. 7 in [6]).  The position of the calibration curve can also be manipulated 
manually. 
Step 4 – Data exploration and visualisation.  Once the maps have been calibrated, the data can be plotted 
as single or multi-channel maps or in binary, ternary and spider diagrams.  XMAPTOOLS provides a 
guided environment for data exploration based on a large variety of structural formulas, diagnostic 
elemental ratios for major and trace elements as well as temperature and pressure conditions. 
 
3.2  Workflow for LA-ICP-MS data 
Step 1 – Importing data and corrections.  The LA-ICP-MS data are imported in XMAPTOOLS as element 
concentration either in ppm or weight percentage of element [12].  The map size and orientation can be 
adjusted in the module IMPORT TOOLS.  Holes, polish defects and all other mineral phases are 
masked-out using one of the classification options described above. 
Step 2 – Trace element map visualisation and sampling tools.  (Note that these tools are available for 
the analysis of any type of map, including EPMA data).  XMAPTOOLS incorporates several options for  
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data visualisation specially designed for trace element analysis.  The element concentration can be 
displayed using either linear or logarithmic colour bar (Figs. 6a and 6b).  The compositions can be 
extracted along any linear profile or path and plotted for all or a selection of elements (Fig. 6c).  Average 
compositions and associated standard deviations can be extracted from spatial domains (area-of-interest) 
or along a smoothed profile – integrating a rectangular area or using a scanning window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Garnet LA-ICP-MS map from a migmatite of the El Oro Metamorphic Complex 
(SW Ecuador) showing complex trace element distribution patterns.  Map of Yb (in ppm) plotted using 
a) logarithmic, and b) linear colour scales.  c) Trace element concentration profile from A to B; note that 
the position of the profile is shown in (b).  c) Chondrite-normalised rare earth element (REE) patterns 
for five areas reported in (a).  This diagram depicts the behaviour of REE in each zone. 
 
 
Step 3 – Trace element data visualisation, spider diagrams and map transformation.  Similarly to major 
element, trace element data can be visualised using the modules BINARY and TRIPLOT.  Manual and 
automated clustering allow chemical groups and their spatial distribution to be characterised.  Spider 
diagrams – plots of the abundances of a set of elements such as rare earth elements (REE) relative to 
their abundance in some standard – can be readily generated in XMAPTOOLS using the one of the sets 
of normalisation values available (Fig. 6d).  Finally, the maps can be combined together within the 
GENERATOR module using any arithmetic operation generating a new map. 
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