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An inverse modeling approach to obtain P–T conditions of metamorphic
stages involving garnet growth and resorption
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Abstract: This contribution presents an approach and a computer program (GRTMOD) for numerical simulation of garnet evolution
based on compositions of successive growth zones in natural samples. For each garnet growth stage, a new local effective bulk
composition is optimized, allowing for resorption and/or fractionation of previously crystallized garnet. The successive minimizations
are performed using the Nelder–Mead algorithm; a heuristic search method. An automated strategy including two optimization stages
and one refinement stage is described and tested. This program is used to calculate pressure–temperature (P–T) conditions of crystal
growth as archived in garnet from the Sesia Zone (Western Alps). The compositional variability of successive growth zones is
characterized using standardized X-ray maps and the program XMapTools. The model suggests that Permian garnet cores crystallized
under granulite-facies conditions at T> 800 °C and P = 6 kbar. During Alpine times, a first garnet rim grew at eclogite-facies
conditions (650 °C, 16 kbar) at the expense of the garnet core. A second rim was added at lower P (∼11 kbar) and 630 °C. In total,
garnet resorption is modeled to amount to ∼9 vol% during the Alpine evolution; this value is supported by our observations in X-ray
compositional maps.
Key-words: thermodynamic modeling; garnet; resorption; X-ray mapping; XMapTOOLS.
1. Introduction

An inverse approach to a scientific problem involves the
determination of the causal factors that satisfy a set of
observations. In metamorphic rocks of a given bulk-rock
composition (CBR), pressure (P) and temperature (T)
conditions determine the stable mineral assemblage, thus
they constitute the causal factors. In this case, observations
are the coexisting phases defining the mineral assemblage,
their compositions and volume proportions. However,
Gibbs free energy minimization, the method classically
used to model such an assemblage, is a forward technique
(e.g., de Capitani & Petrakakis, 2010). Resulting equili-
brium phase diagrams are strictly based on assemblages
predicted by Gibbs free energy minimization for a given
CBR, i.e., the composition of a rock volume devoid of
compositional heterogeneities. Such diagrams combined
with mineral isopleths have been intensively used to
estimate P–T conditions in metamorphic rocks by
comparing results of the model with observations.
Porphyroblasts are large crystals surrounded by a matrix

of finer-grained minerals and are of central interest
because they often preserve a chemical and textural record
of metamorphic processes and conditions. For instance,
garnet porphyroblast in low- to moderate-grade metamor-
phic rocks often are compositionally zoned, and in
DOI: 10.1127/ejm/2017/0029-2597
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favorable cases such zoning can be used to infer the part
of the P–T history during which garnet grew in a sample
(e.g., Spear & Selverstone 1983; Spear et al., 1984, 1991a;
Konrad-Schmolke et al., 2005; Gaidies et al., 2006,
2008b; Cheng & Cao, 2015). This method works for
relatively large garnet crystals provided that metamorphic
duration is not unusually long and that thermal maximum
reached by the sample was below ∼700 °C. In such cases,
intracrystalline diffusion is slow enough (Yardley, 1977;
Caddick et al., 2010; Stowell et al., 2011) to preserve fine
compositional differences, and the compositional zoning
in garnet is likely to reflect growth conditions. However,
variations in P–T conditions and isolation of early garnet
growth zones imply a gradual change in CBR of the
reactive part of the rock (Evans, 2004). In cases where a
significant amount of compositionally zoned garnet is
preserved (>2–3 vol%), a single equilibrium phase
diagram cannot be used to retrieve successive P–T stages.
During the last 25 years four main approaches were
developed to overcome this problem, all of which are
essentially based on thermodynamic equilibrium theory:

–
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DiffGibbs program (Spear et al., 1991b) allows for
prediction of the chemical-zoning pattern of garnet. It
accounts for intragranular diffusion in garnet operating
simultaneously with net-transfer and exchange reactions
during garnet growth. Along a specific P–T trajectory,
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garnet is assumed to be in equilibrium with a given set of
phases. The limit of this approach is that it does not test
the stability of the assemblage for the given CBR.
–
 The second approach consists of successive forward
models for which CBR is manually altered to account for
material sequestered in garnet cores, as analyzed and
mapped by electron microprobe (Marmo et al., 2002;
Tinkham & Ghent, 2005; Caddick et al., 2007).
–
 Forwardmodeling of garnet zoning and coexisting phases
(includingmineral modes) is realized for an arbitraryP–T
path using Gibbs free energy minimization, eventually
comparing at each stage the predicted composition of
garnet with the observed zoning (e.g., Konrad-Schmolke
et al., 2008; Robyr et al., 2014). Garnet compositions and
volumes produced at each step are fractionated from the
CBR, thus providing a new effective bulk composition.
That composition refers to the volume domain in the rock
over which thermodynamic equilibrium is established
duringone incrementofgarnet growth.Thefirst limitation
of suchmodels is the arbitrarychoiceof theP–T trajectory.
To improve the results of such models, Moynihan &
Pattison (2013) provided an automated inverse strategy to
derive the “best” P–T trajectory by minimizing a misfit
parameter, basically the weighted differences between
measured and model compositional profiles. Once a P–T
point is found, a search begins for the nextP–T point, with
a model composition that best matches the next point on
the garnet transect. Similarly, Vrijmoed & Hacker (2014)
proposed a brute-force computational method (inverse
technique as well) to determine the bestP–T trajectory by
minimizing the differences between predicted and
measured garnet compositional profiles along different
trajectories. The fundamental limit of both Moynihan &
Pattison (2013) and Vrijmoed & Hacker (2014)
approaches is that garnet growth is assumed to occur
continuously, and no garnet resorption is taken into
account. In reality, part of the fractionating garnet may
continue to react during the next P–T point and to being
dissolved. Evidence of garnet resorption is commonly
visible in compositional maps (see, e.g., Figs. 3a,c and 4a
in Moynihan & Pattison, 2013). Again, this may produce
significant changes in effective composition, depending
on the amount resorbed, which is typically not visible in a
sample.
–
 The program Theria_G (Gaidies et al., 2008a) allows for
numerical simulation of porphyroblast nucleation and
garnet growth in a given volume of rock for any defined
P–T–time (P–T–t) path. Two major modules are used by
Theria_G, (1) the Gibbs free energyminimization routine
of Theriak (de Capitani & Brown, 1987) and (2) a model
describing intragranular multi-component diffusion. In
contrast to the previous techniques, Theria_G simulates
the formation of an entire population of garnet with
variable grain size using a forward model. The arbitrary
choice of the P–T trajectory is again a severe limitation of
this model. However, Moynihan & Pattison (2013) used
the approach described above to derive the best P–T
trajectory, which is subsequently defined as input in
Theria_G models.
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Addressing some of the limitations of existing
approaches, this study proposes an alternative strategy
and a computer program, GRTMOD (available at http://
grtmod.petrochronology.org), to model garnet growth
during successiveP–Tstagesbasedonnatural compositional
records. To improve the control data, garnet compositions of
successive growth zones are characterized from standard-
izedX-raymaps (see details in Lanari et al., 2014). TheP–T
conditions as well as proportions of garnet resorption are
optimized byGRTMODat each step tomatch themodeled and
measured compositions. The model presented in this report
differs from those reviewed above in that it is strongly based
on the observation of preserved garnet growth zones in
natural rocks; no provision for intracrystalline diffusion is
made. GRTMOD is written in MATLAB© and interacts with
Theriak (de Capitani & Brown, 1987) using the extension
Theriak_D (Duesterhoeft & de Capitani, 2013).
2. GRTMOD strategy

The strategy behind GRTMOD consists of using uncon-
strained nonlinear optimization to find the minimum of an
objective function in n-dimensional space (N≥ 2). The
variables to be optimized are P, T, and, for stages Si (i> 1),
the volume fractions of all previous garnet growth zones
that are fractionated from the CBR. These volume fractions
may decrease in the course of modeling because of garnet
resorption, which possibly affects the earlier growth zones
to variable extents. The objective function used reflects the
deviation of the model composition from the measured com-
positions. This approach critically relies on the characteriza-
tion of the composition of successive garnet growth zones.

2.1. Growth stages of garnet and corresponding
variables

As discussed in the introduction, in low- to moderate-
grade metamorphic rocks (T< 700 °C), for relatively large
garnet crystals and assuming that metamorphic duration is
not unusually long, intracrystalline diffusion is slow and
the successive garnet compositions are likely to reflect
changes in equilibrium conditions only. Basically, the
absence of zoning caused by intracrystalline diffusion can
be verified by sharp compositional boundaries between the
successive growth zones (Figs. 1 and 2).

In the present study, the growth history of garnet is
divided into discrete events, defined as “growth stages”
(Si, i= 1,...,n, see Table 1). An individual growth stage
is a short event occurring at given Pi and Ti during which a
garnet volume fraction vi grows with a homogeneous
composition Ci

grt.
For any growth stage Si, the variables to be optimized

are its specific P and T (Pi and Ti) as well as the volume
fraction of previous garnet to be fractionated from the CBR

(vi,j= 1,..., vi,j= i�1). The number of variables at stage i
thus is:

Ni ¼ 2þ ði� 1Þ: ð1Þ
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Table 1. Definitions of symbols used in text.

CBR Bulk rock composition in oxide weight percentage

Ci
LEB Local effective bulk composition in oxide weight

percentage
Si Growth stage i
Ni Number of variables to be optimized during stage i
Pi,Ti Pressure and temperature conditions optimized for

stage i
vi Volume fraction of garnet produced during stage i
vi,j Volume fraction of garnet crystallized during stage

j and fractionated from CBR at stage i
Ci
grt Measured composition of garnet Grti in oxide

weight percentage
ri,j Total resorption of Grtj at stage i
rgrt Total resorption of garnet
rigrt Density of Grti
ri�1
rock Density of the rock at stage i�1

ri�1
mtx Density of the matrix (all phases excepted garnet)

at stage i�1
f measured
k Fraction of end-member k as measured
f model
k Fraction of end-member k as modeled
vk Weighting factor
nk Number of counts recorded for the element

corresponding to end-member k
L0 Loss function value (weighted)
C0 Cost function value
C0

i
1;s Cost function value of the solution s for stage i

(optimization1)
C0

i
2;s Cost function value of the solution s for stage i

(optimization2)
TC0 Tolerance on C0 used during auto-refinement
Gi

1;r Starting guess for stage i and minimization r
(optimization1)

Gi
2;r Starting guess for stage i and minimization r

(optimization2)
Si1;s Solution s for stage i (optimization1)
Si2;s Solution s for stage i (optimization2)
Sibest Best solution selected for stage i
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Fig. 1. Compositional maps of garnet in a polymetamorphic
eclogitic micaschist from the Sesia Zone. Data obtained using
XMapTools: maps of end-member proportions generated using the
external function Gar-StructForm: (a) grossular; (b) almandine, (c)
pyrope; (d) spessartine. (e) Maps of the compositional groups
generated using the module Chem2d (Lanari et al., 2014). Domains
used to derive the average composition of Grt1, Grt2 and Grt3 are
outlined by dashed line. (Online version in color.)
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For the first stage, the CBR of the sample is assumed to
be equal to the composition of the reactive part of the
system; hence CBR serves as input for the forward models.
For subsequent stages (i> 1), the local effective bulk
composition, Ci

LEB, is calculated as follows:

Ci
LEB ¼

CBR �Pi�1
j¼1 v

i;j rigrt

ri�1
rock

Ci
grt

ð1�Pi�1
j¼1 v

i;jÞ ri�1
mtx

ri�1
rock

; ð2Þ

where Ci
grt is the measured composition (in oxide wt%) of

the garnet growth zone i; rigrt is its model density, and ri�1
rock

and ri�1
mtx are the average rock density and matrix density

(i.e., all phases except garnet) from the preceding stage; vi,j

is the volume fraction of garnet crystallized during stage j
that is fractionated from the CBR at stage i. As some garnet
of stage i is preserved in the present-day sample despite
possible resorption, the following condition is applied by
GRTMOD at each growth zone:

0 < vi;j � vi�1;j: ð3Þ
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The resorption of garnet j at stage i (i> j) is expressed in
vol% of garnet in the bulk rock and is given by:

ri;j ¼ ðvi�1;j � vi;jÞ � 100: ð4Þ
The total resorption of garnet rgrt is defined as

rgrt ¼ S
i
S
j
ri;j: ð5Þ
In order to compute the local effective bulk composition
from garnet volume fractions – to fractionate the previous
garnet from the CBR – the rock density of the previous
stage is required (Eq. (2)). The density of the rock at stage
i�1 (ri�1

rock) is calculated assuming zero porosity:

ri�1
rock ¼ S

i�1

j¼1
vi;jrigrt þ ri�1

mtxð1� S
i�1

j¼1
vi;jÞ: ð6Þ
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Fig. 2. Zoning profile of garnet end-member proportions along AB
transect (see Fig. 1): (a) grossular; (b) almandine; (c) pyrope; note
different scales. Fractures in garnet core (Grt1) are indicated by
white arrows in (a); the corresponding compositions are neglected in
further calculations (black circles). Mean compositions of each
garnet group are reported (solid black lines) together with standard
deviation (1s, dashed black line). Black bands show mineral
inclusions in garnet.
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Fig. 3. Sketches illustrating garnet growth during three hypothetical
stages that include resorption prior to growth stages 2 and 3. The
colored domains are the subsystems being considered at each stage
by the model. For stages 2 and 3, two sketches are displayed; the first
one (left) shows the amount of resorption of previously formed
garnet that is used to estimate the local effective bulk of that specific
stage. The second sketch (right) shows the growth of a new garnet
rim modeled using Gibbs free energy minimization. (Online version
in color.)

184 P. Lanari et al.
The volume fractions used in this study are expressed as
fractions of the entire system, i.e., the rock sample.
Consequently the volume of garnet predicted by GRTMOD

to be stable for stages i> 1must be corrected for the size of
the subsystem being considered at each stage by the model
(in Fig. 3, this corresponds to the blue, green, and red
domains for stages 1, 2, and 3, respectively).
k

2.2. Objective function

The objective function is composed of a loss function
generating the number L0 and a cost function generating
the number C0. Both parameters are used to quantify the
amount by which the predicted garnet composition
deviates from the measured values. The loss function is
defined as:

L0ðPi;Ti; vi;j¼1; :::; vi;j¼i�1Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
m

k¼1
ðf measured

k � f model
k Þ2vk

r
; ð7Þ

where f measured
k and f modeled

k are the proportions of end-
member k, as measured or modeled, andvk is the weighting
factor of the corresponding element. The end-member
eschweizerbart_
proportions of grossular (fGrs), pyrope (fPrp), almandine
(fAlm), and spessartine (fSps) are calculated fromCa,Mg, Fe,
and Mn abundances, expressed in number of atoms per
formula unit (apfu). However, the proportions fGrs, fPrp, fAlm
and fSps are not known with the same precision, hence
a weighting factor is required. It takes into account the
relative analytical uncertainty of each end-member propor-
tion by its variance s2

k (sk: standard deviation), hence the
weighting factor is defined as

vk ¼ 1

s2
k

: ð8Þ

In mapping conditions, the precision (1s) of the electron
microprobe measurement of one pixel composition is
estimated using a Poisson law (e.g., Lanari et al., 2014)

p ¼ 1ffiffiffi
n

p ; ð9Þ

where n is the number of photons reaching the detector
during a single measurement. The number of recorded
counts n is corrected for dead-time bias of the detector. For
multiple independent measurements fk of the same X-ray
flux f, the variance is close to

s2 ¼ n: ð10Þ
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This obvious relationship is derived from equation (9)
and may be tested by calculating the variance of single
measurements of the same composition. For a large set of
measurements of a homogeneous material – such as a set
of pixels of X-ray maps – the precision calculated from the
variance matches the precision of the single-pixel estimate
made using equation (9). By combining equations (8) and
(10), it is possible to estimate the weighting factor of an
end-member k using the number of recorded counts nk of
the corresponding element using the relationship

vk ¼ 1

nk
: ð11Þ

Consequently, the loss function used in this study is

L0ðPi;Ti; vi;j¼1; :::; vi;j¼i�1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
m

k¼1

ðf measured
k � f model

k Þ2
nk

s
: ð12Þ

The number L0 generated by the loss function is
minimized to derive the best set of variables (maximum
likelihood solution). However, this number is not
intuitively representing the deviation between model
and measured compositions because of the weighting
factor. This is the reason why a cost function is also part of
the objective function. In contrast to the loss function, the
cost function generates the number C0, which is intuitively
representing the quality of the solution. The cost function
is defined as:

C0ðPi; Ti; vi;j¼1; :::; vi;j¼i�1Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
m

k¼1
ðf measured

k � f model
k Þ2

r
; ð13Þ

C0 is the least square of the deviations between the model
and measured end-member proportions without taking into
account theuncertaintyon themeasurement.Forgarnetwith
four end-members, a value ofC0< 0.04 indicates a good fit
of the model. For garnet showing low Mn-content (<1wt
%), only three end-members may be used to describe its
composition. In such a case, a threshold value of 0.03 is set
for C0 (see application example below).
2.3. Minimization procedure

The problem addressed in this study is a nonlinear
optimization problem for which the derivatives are not
known. Consequently a heuristic search method has to be
used; the Nelder–Mead technique (Nelder & Mead, 1965),
implemented in the MATLAB© function fminsearch, was
selected. It is critical for the user to understand the technique
of minimization in order to evaluate the limits of this
approach. A complete method description is available in
Nelder & Mead (1965) or when using the help function in
MATLAB©. This method uses the concept of simplex, a
polytope of nþ 1 vertices in n dimensions. The nþ 1 values
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of the objective functionL at the vertices are ordered and the
position of the centroid is calculated of all n points, except
for the worst point nþ 1. Then the algorithm computes the
values of the objective function at the reflected point, the
expandedpoint and thecontractedpoint of theworst point. If
one of the previous values is smaller, the corresponding
point replaces the worst point and the optimization
continues, else a reduction step of the simplex is done.
This procedure is repeated until convergence to a local
minimum. The best solution found is a local minimum and
may differ significantly from the global minimum of the
objective function, which represents the maximum likeli-
hood solution. Consequently the optimization must be done
using different initial guesses. An attempt to provide an
automated procedure is proposed in the next section.
Advantages and disadvantages of this automated procedure
are pointed out in the discussion.

2.4. Toward an automated optimization strategy

The optimization strategy depends on the number of
variables being optimized. For instance, for the first stage
S1, only two variables (P1, T1) are optimized, and the
procedure is straightforward. For all subsequent stages
(Si> 1), the problem is more complex because of the
additional compositional variables (Fig. 3). The procedure
is divided into three phases: optimization1, optimization2,
and auto-refinement. During optimization1, successive P–
T minimizations are carried out from different starting
guesses in order to determine the global minimum within
the P–Twindow (Fig. 4a).Optimization2 refines the garnet
fraction variables (vi,j = 1→ i�1), as well as P–T (Fig. 4b).
The starting guess for optimization2 is the best P–T couple
obtained during optimization1. A go fast mode is available
to begin directly optimization2 from user’s favorite P–T
initial guess. Finally, the auto-refinement phase checks the
local variability of the cost function (C0 value) in order to
provide a relative uncertainty on the P–T estimate (Fig. 5).
A complete description of these three phases is presented
in the Appendix 1.

2.5. Compositional characterization of growth zones

As discussed above, during a single growth stage the
fractionation of the effective composition caused by garnet
growth as well as small changes in P and T conditions are
neglected. These two assumptions are critical and demand
extensive characterization of the compositional variations
of the studied sample. It is strongly recommended to use
high-resolution quantitative compositional maps of garnet
end-members to define the successive growth zones (see,
e.g., areas used in Fig. 1). The quantitative X-ray mapping
technique is useful to measure the compositional variability
of metamorphic minerals at the thin-section scale (e.g.,
Lanari et al., 2012, 2013). Local compositional variations
caused by surface crystal defects, late re-equilibration with
inclusions or fractures are not taken into account; any
analyses showing mixed analyses close to the contact
between two growth zones are discarded. In Fig. 2, for
xxx
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example, the intermediate compositionsbetween thedefined
growth stagesarenot beingconsidered. It isnot excluded that
theymay result from protracted growthwith aminor change
in P–T conditions or kinetic-controlled growth. This
approach critically relies on the chemical information stored
in the natural sample and, therefore, on the quality of the
microprobe measurements. No a priori assumption is made
on the P–T conditions of each stage. However, some garnet
compositions from some growth stages may have been
totally resorbed during later stages. If the composition is not
preserved in the present-day specimen, it is obvious thatP–T
conditions cannot be retrieved using this approach.
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3. Benchmarking test for a sample showing
typical prograde garnet zoning

To benchmark GRTMOD, P–T conditions of a garnet in the
San Emigdio Schist (sample 06SE23 from Chapman
et al., 2011) were estimated in a system simplified to
SiO2-Al2O3-FeO-MnO-MgO-CaO-Na2O-K2O-H2O using
the same thermodynamic dataset (TC321p2.txt) and CBR

as in that study. This example was selected because (i) the
authors demonstrated that the effects of intracrystalline
diffusion were limited to narrow zones (∼10mm; Fig. 7 in
Chapman et al., 2011), and (ii) there is no clear evidence
of resorption (see Fig. 6a,b in Chapman et al., 2011). Thus
the automated optimization strategy of GRTMOD is
expected to predict incremental growth of garnet along
the prograde P–T history without resorption.

The zoning profile reported in Fig. 5b of Chapman
et al. (2011) was divided into four successive growth zones:
Grt1 (0.37vol%, Alm36Prp2Grs26Sps36); Grt2 (0.12vol%,
Alm57Prp3Grs33Sps7); Grt3 (4.2 vol%, Alm67Prp7Grs25Sps1);
and Grt4 (2.31vol%, Alm64Prp9Grs26Sps1). The volume
fraction of each growth zone was calculated assuming a
total of 7 vol% of garnet being produced during the
prograde P–T history (value taken from Fig. 11b of
Chapman et al., 2011). As explained above (see Sect. 2),
the procedure requires a subdivision into discrete stages
of growth, and four stages where selected based on the
zoning profile.

The benchmark results are reported in Fig. 6. The
model predicts that garnet grows along a prograde
trajectory with increasing T and P from ∼450 °C to
∼630 °C and 4 kbar to 11 kbar. It is important to point out
here that the model does not predict any resorption of
the previous growth zones (Fig. 6b), in line with the
xxx
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Fig. 6. Results of the benchmark test (see text for details). (a) P–T diagram with the solutions obtained for the four stages; best solutions are
highlighted. Reported in gray is the P–T path obtained by Chapman et al. (2011). (b) Volume fraction of garnet predicted by the best model for
stages 1, 2, 3, and 4. (c) Zoning profiles (thick lines) and predictions from this study (thin) for almandine and pyrope (left); grossular and
spessartine (right). (Online version in color.)
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conclusions of Chapman et al. (2011), and the model
results were obtained without any intervention from the
user. The predicted zoning profiles are compared with
the measured one in Fig. 6c,d. Although Grt2 is slightly
underestimated in the model (0.03 vol% instead of
0.12 vol%), the predicted profile shape perfectly matches
the observations. The residuals are very low (C0 between
0.007 and 0.025) resulting in an excellent match of the
modeled compositions.
4. Sample description and compositional
mapping

The studied sample FG12-157 is an eclogitic garnet-
bearing micaschist from the Sesia Zone in the Italian
Western Alps (see Supplementary Material S6 for photo-
graphs). It was selected from a collection of ∼10 samples
showing similar garnet resorption features because it
illustrates well the strengths and weaknesses of the
automated approach. Other samples, some of which show
more P–T stages or no resorption (Giuntoli, 2016), will be
presented in a subsequent study. Sample FG12-157 was
collected at Lillianes in the Lys Valley in Italy
(X= 409683; Y= 5054033 ED 1950 UTM Zone 32N).
This micaschist is made of quartz (40 vol%), phengite
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(30 vol%), garnet (15 vol%,) glaucophane (6 vol%), and
epidote (4 vol%), with minor chlorite, albite, rutile,
zircon, titanite, ilmenite, and graphite (all together of
about 5 vol%). A strong eclogitic foliation is marked by
phengite, glaucophane and allanite; it was subsequently
deformed into open folds. Garnet-grain size ranges from
200mm up to several mm. Microscopically, large garnet
porphyroblasts systematically show a bright core sur-
rounded by a dark rim. The small grains, however, are dark
crystals with features similar to the rims of porphyroblasts.
The cloudy appearance of the dark garnet is mostly due to
fine rutile inclusions. Glaucophane and phengite inclu-
sions are frequent in the dark rim, whereas only quartz is
found in the bright core. In the matrix, glaucophane shows
characteristic core to rim zoning, with more strongly
pleochroic rims (darker blue compared to core) reflecting
higher iron contents. Some glaucophane grains are rimmed
by green amphibole, indicating local and limited
retrogression, with minor chlorite and albite reflecting
greenschist-facies conditions. Allanite shows REE-rich
cores and locally a clinozoisite rim (10mm). Other
accessories are graphite, zircon, and rutile overgrown by
titanite and followed by an ilmenite rim.

Electron probe microanalyses (EPMA) were performed
using a JEOL JXA-8200 superprobe at the Institute of
Geological Sciences (University of Bern). Following the
xxx



Table 2. Average compositions and standard deviation of garnet.

Core (Grt1) (n= 920) Fractures (n = 22) Rim1 (Grt2) (n = 964) Rim2 (Grt3) (n= 319)

... Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev.

SiO2 38.17 0.54 37.83 1.38 38.28 1.21 38.73 1.52
TiO2 0.07 0.01 0.07 0.01 0.25 0.59 0.2 0.64
Al2O3 21.07 0.34 21.10 0.36 21.04 0.71 21.35 0.89
FeO 31.25 0.61 30.94 0.69 28.87 1.01 26.61 1.36
MnO 0.99 0.28 0.74 0.18 0.51 0.16 0.37 0.14
MgO 6.42 0.19 4.94 0.45 4.89 0.29 3.78 0.35
CaO 1.36 0.16 4.15 0.64 5.67 0.28 9.12 0.7
Na2O 0.05 0.02 0.05 0.02 0.06 0.02 0.05 0.04
K2O 0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01 <0.01
Structural formula (12 anhydrous oxygen basis)
Si 3.02 0.03 3.00 0.06 3.03 0.06 3.03 0.07
Al 1.97 0.03 1.97 0.05 1.96 0.06 1.97 0.08
Mg 0.76 0.02 0.58 0.05 0.58 0.03 0.44 0.04
Fe 2.07 0.04 2.05 0.06 1.91 0.07 1.74 0.09
Mn 0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01 0.01
Ca 0.12 0.01 0.35 0.05 0.48 0.02 0.77 0.06
XAlm 0.69 0.01 0.68 0.02 0.64 0.01 0.59 0.02
XGro 0.04 0.01 0.12 0.02 0.16 0.01 0.26 0.02
XPyr 0.25 0.01 0.19 0.02 0.19 0.01 0.15 0.01
XSps 0.02 0.01 0.02 <0.01 0.01 <0.01 0.01 <0.01
GRTMOD input values
FAlm 0.703 0.644 0.591
Walm 3750 3280 3000
fGrs 0.039 0.162 0.259
WGrs 420 1820 2920
fPrp 0.258 0.194 0.15
WPrp 1270 980 720
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proceduredescribed inLanari et al. (2013, 2014), theEPMA
session is divided into two steps, i.e., the measurement of
point analyses and X-ray compositional maps, both in
wavelength-dispersivemode (WDS). Analytical conditions
for point analyses were 15 kV accelerating voltage, 20 nA
specimen current, and 40 s dwell time (including 2� 10 s of
background measurement). Nine oxide components were
measured, using synthetic and natural standards: wollas-
tonite (SiO2), anorthite (Al2O3, CaO), almandine (FeO),
spinel (MgO), orthoclase (K2O), albite (Na2O), ilmenite
(TiO2), and tephroite (MnO). Analytical conditions for X-
ray maps were 15 kV accelerating voltage, 100 nA
specimen current, and a dwell time of 200ms/pixel. Nine
elements (Si, Ti, Al, Fe, Mn, Mg, Na, Ca and K) were
measured at the specific wavelength in two passes.
Intensity maps were standardized using spot analyses as
internal standard. X-ray maps were processed using
XMapTools 2.2.1 (Lanari et al., 2014). The average
composition of each growth zone was calculated from the
map pixels selected (Fig. 1). Analytical uncertainties
(derived using Eq. (9)) were propagated through the
structural formulae computation using a Monte-Carlo
simulation. Compositional data and corresponding ana-
lytical uncertainties are reported in Table 2. The sum of the
analytical uncertainties on fPrp, fGrs and fAlm is about 0.03.
This value is used to define the value of STOL.
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5. Results

5.1. Garnet composition and texture

Garnet exhibits complex zoning as shown by composi-
tional maps of end-member proportions (Fig. 1). The
cores are Prp- and Alm-rich and Grs-poor (Alm68-70Prp24-
26Grs3-5Sps1-3, Table 2). Cores have lobate edges
suggesting resorption. A new garnet enriched in Grs and
depleted in Prp and Alm (Alm66-70Prp17-21Grs10-14Sps1-3)
fills up numerous fractures (Fig. 1). Two distinct over-
growths surround the apparently porphyroclastic cores: a
first rim (Alm63-65Prp18-20Grs15-17Sps1) and a second rim
(Alm57-61Prp14-16Grs24-28Sps1) (Fig. 1e). Sample textures
indicate that the second rim grew on internally and
externally resorbed portions of the first rim, i.e., the
second rim is observed directly surrounding the core as
well as the first rim. This observation suggests that partial
resorption of garnet core plus growth of the first rim may
have occurred before or during growth of the second
rim (third stage in Fig. 3). The first rim is identical in
composition to garnet that seals hairline fractures in
the core. This observation supports the sequence of
crystallization proposed here. Resorption of garnet core is
common in polymetamorphic rocks, sometimes leading
to the formation of mushroom-shaped and atoll garnet
xxx
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(Robyr et al., 2014 and references therein). Based on
these textural and compositional relationships, three
growth stages are defined: stage 1 corresponding to the
growth of garnet core (Grt1), stage 2 for the first rim
(Grt2), and stage 3 for the second rim (Grt3).

5.2. Thermodynamic models

For this application example, the thermodynamic
dataset of Berman (1988) with subsequent updates
collected in JUN92.bs (distributed with Theriak-Domino
03.01.2012) was used together with the following
solution models: Berman (1990) for garnet; Fuhrman
and Lindsley (1988) for feldspar; Meyre et al. (1997) for
omphacite; Keller et al. (2005) for white mica, and ideal
mixing models for amphibole (Mäder & Berman, 1992;
Mäder et al., 1994), epidote and chlorite (Hunziker,
2003). As the studied garnet contains <1wt% MnO,
restricted to parts of the core (suggesting heterogeneous
distribution of the Mn-rich precursors), the Mn compo-
nent is ignored and the system simplified to SiO2-TiO2-
Al2O3-FeO-MgO-CaO-Na2O-K2O-H2O. For other cases,
where Mn-rich garnet is modeled, the MnO component
must be added to the system (e.g., benchmark test in
Sect. 3). The anhydrous CBR, determined by XRF,
comprises SiO2 (60.36wt%), TiO2 (1.03wt%), Al2O3

(16.51wt%), FeO (7.95wt%), MgO (3.29wt%), CaO
(2.09wt%), Na2O (1.19wt%), and K2O (3.57wt%).
Because of the lack of experimental data and suitable
ferric end-members in solid-solution models, Fe3þ was
ignored. All Gibbs free energy minimizations were
carried out assuming a saturating pure H2O fluid. The
amount of H2O predicted at high P is in line with the
measured LOI (2.01wt%) in the present-day sample.
End-member mineral abbreviations used throughout text
and figures are from Whitney & Evans (2010).
The model is restricted to a P–Twindow between 500–

900 °C and 5–20 kbar. Minimum garnet abundances, i.e.,
those preserved in the present-day sample, were fixed at
4 vol%forGrt1, 3 vol%forGrt2, and4 vol%forGrt3.Details
regarding the results printed out by GRTMOD and the
modeled assemblages are reported in Supplementary
Material S1–S5 (linked to this article and freely available
online at the GSW website of the journal: http://eurjmin.
geoscienceworld.org), corresponding to the stages de-
scribed in the following subsections. Input and output
values of selected variables are reported in Table 4.

5.2.1. Stage 1

During stage 1, only P1 and T1 are optimized. Four starting
guessesG1

1;1,G
1
1;2,G

1
1;3,G

1
1;4 were defined at 600 °C–8 kbar,

600 °C–16 kbar, 800 °C–8 kbar, and800 °C–16 kbar, respec-
tively, following the procedure described in Fig. 4. It is
instructive to follow the iterations step by step and to
describe the results provided in Table 3.
The first minimization (G1

1;1 from 600 °C–8 kbar)
converges to a minimum at 851 °C and 6.03 kbar for a
C0 value of 0.021. A solution S11;1 is retained for the
eschweizerbart_
following because for this first minimization C0< 0.03.
Model fAlm and fGrs differ from the measured values by
∼0.01 each. 10.5 vol% of garnet is predicted to be stable at
that stage. The second minimization (G1

1;2 from 600 °C–
16 kbar) converges to a different minimum at 674 °C and
17.49 kbar with a C0 value of 0.107. As C0 is much higher,
model fAlm and fGrs are quite different from the measured
values (model, 0.62 and 0.11; measured, 0.70 and 0.04)
and no solution is saved because C0> 0.03. The third
minimization (G1

1;3 from 800 °C–8 kbar) converges to a
minimum at 851 °C and 6.02 kbar for a C0 value of 0.021.
This result is fairly similar to solution S11;1, indeed
minimizations 1 and 3 converge to the same local
minimum. The fourth minimization (G1

1;4 from 800 °C–
16 kbar) converges to a minimum at 899 °C and 6.14 kbar
for a C0 value of 0.015. A solution S11;2 is obtained
(C0< 0.03). 7.14 vol% of garnet is predicted to be stable at
that stage. The second solution (S11;2) has a smaller value of
C0 (Co11;2 < Co11;1) and is selected as the best solution for
stage 1: S1best ¼ S11;2 (see Fig. 7; Tables 3 and 4).
5.2.2. Stage 2 – automated procedure

For stage 2, the optimization is divided into two steps:
optimization1 and optimization2. During optimization1, a
fixed amount of garnet Grt1 (7.14 vol%), corresponding to
the amount predicted during stage 1, is initially
fractionated from the CBR. The P–T conditions of the
four starting guesses G2

1;1, G
2
1;2, G

2
1;3, G

2
1;4 are the same as

for stage 1 (see above). The first minimization (G2
1;1 from

600 °C–8 kbar) converges to a minimum at 719 °C and
9.66 kbar withC0 = 1.74� 10�4. A temporary solution S21;1
is stored; 5.95 vol% of garnet is predicted to be stable at
that stage. The second minimization (G2

1;2 from 600 °C–
16 kbar) converges to a minimum at 647 °C and 16.03 kbar
with C0 = 4.15� 10�3. A temporary solution S21;2 is stored;
9.02 vol% of garnet is predicted to be stable at that stage.
The third minimization (G2

1;3 from 800 °C–8 kbar) con-
verges to a solution S21;3 at 719 °C and 9.66 kbar with
C0 = 1.25� 10�4. This solution is close to S21;2 with a
slightly smaller residual. The fourth minimization (G2

1;4
from 800 °C–16 kbar) converges to a solution S21;4 similar
to S21;2. Optimization1 of stage 2 shows that for the same
CBR (i.e., without resorption) Grt2 is predicted stable at
719 °C and 9.66 kbar and 647 °C and 16.03 kbar. The
automated algorithm selects S21;3 as the best solution based
on the C0 values (S

2
1;best ¼ S21;3).

The P–T conditions of initial guesses of optimization2
are fixed at 719 °C and 9.66 kbar. A new variable v2,1

corresponding to the quantity of garnet Grt1 crystallized
during stage 1 and fractionated from the bulk composi-
tion during stage 2 is introduced in the variable list of the
objective function. Three starting guesses are defined
assuming no resorption (v2,1 = 7.14 vol%), strong resorp-
tion (v2,1 = 4 vol%) and moderate resorption (v2,1 = 5.57
vol%). The garnet volume fraction used as input for the
second starting guess corresponds to the amount of garnet
that is preserved in the present-day sample. The first
minimization (G2

2;1 of 7.14 vol%) converges to a
xxx



Table 3. Detailed results from GRTMOD.

Stage 1

Optimization1 Minimization 1 –G1
1;1 Minimization 2 –G1

1;2 Minimization 3 –G1
1;3 Minimization 4 –G1

1;4

Starting T–P 600 8000 600 16,000 800 8000 800 16,000
Final T–P 851 6035 674 17,494 851 6024 899 6145
rgrt/rmtx 4.01 2.63 4.01 2.874 4.01 2.63 4.01 2.68
vi/C0 10.53 0.02151 19.82 0.10752 10.47 0.02083 7.139 0.01531
Sol./Best S11;1 No sol. S11;1 S11;2 Yes

Stage 2 (automated mode)

Optimization1 Minimization 1 –G2
1;1 Minimization 2 –G2

1;2 Minimization 3 –G2
1;3 Minimization 4 –G2

1;4

Starting T–P 600 8000 600 16,000 800 8000 800 16,000
v2,1 7.14 7.14 7.14 7.14

Final T–P 719 9660 647 16,033 719 9658 647 16,034
rgrt/rmtx 4 2.75 4.02 2.86 4 2.75 4.03 2.87
vi/C0 5.95 0.00017 9.02 0.00415 5.94 0.00012 8.98 0.00478
Sol./Best S21;1 S21;2 S21;3 Yes S21;4

Optimization2 Minimization 1 –G2
2;1 Minimization 2 –G2

2;2 Minimization 3 –G2
2;3

Starting T–P 719 9658 719 9658 719 9658
v2,1 7.14 4 5.57

Final T–P 719 9655 694 9493 707 9574
v2,1 7.13 4.35 5.86

rgrt/rmtx 4 2.75 4 2.75 4 2.75
vi/C0 5.95 6.55E�05 9.44 4.44E�05 7.53 2.46E�05
Sol./Best S22;1 S22;2 S22;3 Yes

Stage 2 (go fast mode)

Optimization2 Minimization 1 –G2
2;1

Starting T–P 650 16,000
v2,1 5.57

Final T–P 647 15,947
v2,1 5.92

rgrt/rmtx 4.02 2.86
vi/C0 10.40 8.12E�06
Sol./Best S22;1 Yes

Stage 3 (automated mode)

Optimization1 Minimization 1 –G3
1;1 Minimization 2 –G3

1;2 Minimization 3 –G3
1;3 Minimization 4 –G3

1;4

Starting T–P 600 8000 600 16,000 800 8000 800 16,000
v3,1/v3,2 5.92 6 5.92 6 5.92 6 5.92 6

Final T–P 600 8000 637 13,330 800 8000 637 13,327
rgrt/rmtx 4.02 2.76 3.98 2.79 4 2.7 3.98 2.79
vi/C0 1.82 1.00Eþ19 6.17 0.00017 2.22 1.00Eþ19 6.16 0.00016
Sol./Best No sol. S31;1 No sol. S31;2 Yes

Optimization2 Minimization 1 –G3
2;1 Minimization 2 –G3

2;2 Minimization 3 –G3
2;3

Starting T–P 637 13,327 637 13,327 637 13,327
v3,1/v3,2 5.92 6 4 3 4.96 4.5

Final T–P 637 13,327 632 11,011 637 13,325
v3,1/v3,2 5.92 6 4.87 3.4 5.16 4.62

rgrt/rmtx 3.98 2.79 3.97 2.77 3.98 2.78
vi/C0 6.16 9.72E�05 8.42 2.68E�06 8.27 5.89E�06
Sol./Best S32;1 S32;2 Yes S32;3
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Table 4. Final model results.

Grt1 Grt2 Grt3 Total

Garnet resorption (vol%)
Stage 1 0 0 0 0
Stage 2 1.215 0 0 1.215
Stage 3 1.059 7 0 8.059
Volume of garnet (vol%)
Stage 1 7.139 0 0 7.139
Stage 2 5.925 10.398 0 16.323
Stage 3 4.866 3.398 8.417 16.681
Newly grown garnet (vol%)
Stage 1 7.139 0 0 7.139
Stage 2 0 10.398 0 10.398
Stage 3 0 0 8.417 8.417

Density

Rock density (g/ccm)
Stage 1 2.773
Stage 2 3.048
Stage 3 2.973
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Fig. 7. Results for the application example (eclogitic micaschist from the Sesia Zone). (a) P–T diagram where all the solutions for the three
stages are reported. The best solutions (see text) are highlighted. Note that the alternative solutions for stages 1 and 3 (not used in this model)
are reported in gray. (b) Volume fraction of garnet predicted by the best model during stages 1, 2 and 3. (Online version in color.)
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minimum at 719 °C and 9.65 kbar and a final v2,1 of
7.13 vol%, with a C0 value of 6.55� 10�5 and 5.95 vol%
of Grt2. The second minimization (G2

2;2 of 4 vol%)
converges to a minimum at 694 °C and 9.49 kbar and a
final v2,1 of 4.35 vol% with a C0 value of 4.44� 10�5 and
9.44 vol% of Grt2. The third minimization (G2

2;3 of
5.57 vol%) converges to a minimum at 707 °C and
9.57 kbar and a final v2,1 of 5.86 vol% with a C0 value of
2.46� 10�5 and 7.53 vol% of Grt2. These results suggest
that Grt2 is modeled between 694 °C and 719 °C and
between 9.49 and 9.65 kbar. The increase in T is
associated with a decrease in resorption (from 2.78 vol
% to zero) and to a decrease in the fraction of Grt2 (from
9.44 to 5.95 vol%). In this case different scenarios can be
selected for the second stage. However, as discussed
below (see Sect. 6.3), this solution is not the most likely
based on the mineral inclusions captured during the
growth of this first rim.
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5.2.3. Stage 2 – go fast mode

The results for stage 2 discussed above show that the
automated procedure selects the best solution at the end of
optimization1 and consequently can ignore a solution with
different P–T values. The go fast mode is used with initial
P–T being taken from S21;2 at 650 °C and 16 kbar. The user
defines moderate resorption to stabilize garnet at such
conditions. The minimization converges to a minimum at
647 °C and 15.95 kbar and a final v2,1 of 5.92 vol% with
C0 = 8.12� 10�6 and 10.40 vol% of Grt2. From a statistical
point of view, this solution at higher P is better than those
found with the automated procedure (see Sect. 5.2.2).
However, both P–T conditions allow for precise modeling
of the observed garnet compositions. In contrast to the
low-P solutions, the P–T conditions obtained at high P
with and without resorption are similar (DT= 0.37 °C,
DP = 0.09 kbar). In this case, resorption of 1.21 vol% of
Grt1 improves the quality of the model and is selected as
the most likely solution for stage 2.
5.2.4. Stage 3 – automated procedure

For stage 3, the optimization is again divided into two
steps: optimization1 and optimization2. During optimi-
zation1, a fixed quantity of garnet Grt1 and Grt2 (5.92 vol%
and 6.00 vol%) is fractionated from the CBR. For Grt2
optimization1 is carried out assuming 4.40 vol% resorp-
tion, the minimum required to stabilize garnet with a
composition similar to Grt3. The first minimization (G3

1;1
of 600 °C–8 kbar) does not converge to a solution because
the amount of garnet produced is too small (1.8 vol%
predicted whereas the minimum amount of Grt3 is fixed at
4 vol% observed in the sample). The second minimization
(G3

1;2 from 600 °C–16 kbar) converges to a minimum at
637 °C and 13.33 kbar for C0 = 1.71�10�4. A temporary
solution S31;1 is stored; 6.17 vol% of garnet is predicted
stable at that stage. The third minimization (G3

1;3 from
800 °C–8 kbar) does not converge because it predicts only
2.2 vol% of garnet, far below the minimum amount for
xxx
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Grt3. The fourth minimization converges to the same
minimum as S31;1 with a slightly smaller C0 value of
1.62� 10�4. A temporary solution S31;2 is stored. The
algorithm selects S31;2 as the best solution based on the C0

values (S31;best ¼ S31;2).
The P–T conditions of initial guesses of optimization2

are fixed at 637 °C and 13.33 kbar. Two new variables v3,1

and v3,2 are to be optimized; they correspond to the
quantities of garnet Grt1 and Grt2 fractionated from the
bulk composition during stage 3. Three starting guesses
are defined assuming either no more resorption than given
by the input value (v3,1 = 5.92 vol% and v3,2 = 6.00 vol%),
strong resorption (v3,1 = 4.00 vol% and v3,2 = 3.00 vol%),
and moderate resorption (v3,1 = 4.96 vol% and v3,2 = 4.50
vol%). In this case initial v3,2 is set at 6.00 vol% whereas
the volume fraction of Grt2 at stage 2 is 10.40 vol%. As
only a small volume fraction of Grt2 is preserved in the
present-day sample (i.e., much less than was produced in
stage 2), strong resorption is expected to occur during
stage 3. The first minimization converges to a minimum
(S32;1) at 637 °C and 13.33 kbar and v3,1 and v3,2 of 5.92 and
6.00 vol% with C0 = 9.72� 10�5 and 6.16 vol% Grt3. The
second minimization converges to a minimum (S32;2) at
632 °C and 11.01 kbar and v3,1 and v3,2 of 4.86 and 3.40 vol
% with C0 = 2.68� 10�6 and 8.42 vol% of Grt3. The third
minimization converges to a minimum (S32;3) at 637 °C and
13.33 kbar and v3,1 and v3,2 of 5.16 and 4.62 vol% with
C0 = 5.89� 10�6 and 8.27 vol% Grt3. Two solutions are
found at slightly different pressures (13.37 kbar and
11.01 kbar). The second solution S32;2 is selected here
because it is considered more likely based on the C0 value
and because it matches observed mineral proportions and
textural observations better, suggesting stronger resorption
of the first rim and core before crystallization of the second
rim.
6. Discussion

6.1. Intergranular diffusion and global equilibrium
within domains

In this study garnet growth is modeled based on CBR and
assuming thermodynamic equilibrium to be achieved at
the millimeter scale. Component transport in the rock
matrix through an intergranular medium is assumed to
be fast relative to garnet growth, minimizing chemical
potential gradients in the matrix. For the studied sample,
compositional maps show that garnet in quartz-rich
layers recorded a zoning that is similar to that in
phengite-rich layers. Such observations and the excel-
lent match of model compositions support the assump-
tion of global equilibrium through an intergranular
medium during each individual growth stage. Charac-
teristic diffusion distance for Al in an intergranular
medium saturated with hydrous fluid at 650 °C is >1 cm
for a time >1Myr (Carlson, 2010), allowing for
homogenization of the composition at the sample scale.
However, it is well known that in some cases,
porphyroblast growth can lead to development of local
eschweizerbart_
chemical heterogeneities generating changes in nutrient
production rates (Carlson et al., 1995). In such cases,
our model will not be suitable (Carlson et al., 2015), and
a diffusion-controlled model should be used (see
Konrad-Schmolke et al., 2005; Schwartz et al., 2011;
Ketcham & Carlson 2012).
6.2. Heuristic search method and domains with local
minimum

As this study deals with non-linear problems (see Sect. 2.3)
requiring a heuristic search method, the Nelder–Mead
technique was selected (Nelder & Mead, 1965). However,
at the end of a single minimization it is not possible to
ensure that the minimum found is the global minimum.
One way to ensure that a convergence point is a global
minimum is to map the objective-function with high P–T
resolution. An algorithm to compute such P–Tmaps of C0

and L0 values for a given effective bulk composition is
provided in GRTMOD.

As an example, the C0 map in the P–T range 500–900 °C
and 5–20 kbar was computed for stage 1 using the CBR

(Fig. 8a,b). This map exhibits the shape of the cost function
C for stage1 (seeSect. 5.2.1).Twodistinct regionswith local
minima are foundby the automated function: thefirst region
at high P (HP; 674 °C, 17.49 kbar,C0 = 0.107) and the
second region at high T (HT; 850–900 °C, ∼6 kbar,C0

< 0.03). Every single minimization starting on one side
of the ridge separating the two low regions (dashed line in
Fig. 8a) converges to the HP domain. Those starting on
the opposite flank of the ridge converge to the HT domain.
For stage 1 the automated procedure finds the global
minimum within the HT domain. This first example shows
that the shape of such objective function can be complex.
Hence it is crucial to run many successive minimizations
from different starting guesses.
6.3. Automated strategy [1]: limitation of multiple
minima and solution finding

Similarly, the C0 map in the range 500–900 °C and
5–20 kbar was computed for stage 2, assuming no
resorption of Grt1 (Fig. 8c,d). The effective CBR is
computed by subtracting from CBR the amount of Grt1
produced during stage 1. Two regions with local minima
are found by the automated function during optimization1:
one at HT (3 solutions around ∼720 °C and ∼6.6 kbar for a
best C0 of 1.25� 10�4), and the other at HP (647 °C and
16 kbar with C0 = 4.15� 10�4). In that case, only the
second minimization converges toward HP domain
because the starting guess is located on the other flank
of the ridge separating the two low regions. As the lower
C0 without resorption is found within the HT domain,
647 °C and 16 kbar are selected as starting guess for
optimization2. In such a case, the HP domain is not
investigated during optimization2 (i.e., with resorption) by
the automated function. However, this can be done using
the go fast mode (see Sect. 5.2.3). The results described
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Fig. 8. 2D and 3D P–T maps of the cost function C for stage 1 (a, b) and stage 2 without any resorption (c, d). The four starting guesses are
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Table 5. Average composition and standard deviation of phengite.

Phg n = 280
Average St. Dev.

SiO2 49.94 0.79
TiO2 0.28 0.03
Al2O3 28.54 0.45
FeO 1.71 0.22
MnO 0.22 0.11
MgO 3.04 0.16
CaO 0.49 0.08
Na2O 0.62 0.11
K2O 10.48 0.25
Structural formula (on a basis of 11 oxygen)
Si 3.33 0.03
Ti 0.01 <0.01
Al 2.25 0.03
Fe 0.10 0.01
Mn 0.01 0.01
Mg 0.30 0.02
Ca 0.03 0.01
Na 0.08 0.01
K 0.89 0.02
XMg 0.76 0.03
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above demonstrate that for stage 2 the best solution from
optimization2 (C0 = 4.15� 10�6) is found in the HP
domain. The automated function converges to a local
minimum, which has distinct P–T conditions compared to
those of the global minimum (HP). However, there is little
difference in C0 between both solutions, and Grt2
composition can be accurately modeled at 720 °C/6.6 kbar
and 647 °C/16 kbar.
Stage 2 shows that garnet alone can provide ambiguous

results in the framework of deriving P–T conditions of one
single metamorphic stage. In such cases, it is crucial to
incorporate the study of the coexisting phases. For
example, numerous inclusions of phengite in Grt2 suggest
that it coexisted with Si-rich phengite (Si4þ= 3.33± 0.02
apfu, XMg = 0.76± 0.02) (Table 5). The K-rich white-mica
composition predicted by the model at 647 °C/16 kbar is
Si4þ= 3.34 and XMg = 0.79, whereas at 720 °C/6.6 kbar it is
Si4þ= 3.17 and XMg = 0.68. As expected, the Si content in
phengite increases with increasing P. Modeled phengite
composition nicely matches the measured composition at
647 °C and 16 kbar. The study of coexisting phases, such
as phengite in this example, strongly supports Grt2 growth
during a HP stage.
eschweizerbart_xxx
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6.4. Automated strategy [2]: P–T–X minimization

The two-step optimization proposed in this study is
expected to work when the shape of the objective function
does not change significantly with garnet resorption. The
investigated sample exhibits evidence of strong garnet
resorption (Fig. 1) and is thus well suited to demonstrate
the effectiveness of this automated method. The overall
goal of optimization1 is to find out the best P–T starting
guess in a simple two-variable problem.
TheC0maps in theP–T range550–700 °Cand12–20 kbar

were computed for stage 2 assuming 0%, 42% and 84%
resorption of garnet core (Fig. 9). The P–T position of the
best solution fromoptimization1 (black line inFig. 9) is very
similar to values that assume intermediate and strong
resorption (red lines in Fig. 9). This example demonstrates
that, for a restricted P–T range with a single minimum, the
two-step optimization is an elegant strategy to solve the
problem.

6.5. P–T stages recorded in garnet from
a polymetamorphic micaschist

Themodel predicts that garnet core (Grt1) crystallizedunder
granulite-facies conditions at T> 800 °C and ∼6 kbar. This
result is in line with other estimates available for the same
eschweizerbart_
area (Lardeaux & Spalla, 1991; Rebay & Spalla, 2001;
Giuntoli, 2016). Such HT/low-P metamorphic conditions
are common in the area and were recorded during the
Permian (Rebay & Spalla, 2001). The first rim (Grt2) is
Alpine and grew under eclogite-facies conditions
(650± 50 °C, 16± 2.5 kbar). Similar HP conditions have
been proposed for nearby areas of the Sesia Zone (e.g.,
Konrad-Schmolke et al., 2011; Regis et al., 2014). The
model predicts Grt2 to grow at the expense of Grt1. The
shape of Grt1 remnants with lobate edges supports this
result. However, it is not possible to establish precisely
when resorption occurred. It happened after stage 1 and
either before or during stage 2. The composition of Grt1 is
very different from any observed in comparable rocks
containing typical Alpine prograde garnet. The P–T
conditions obtained for Grt1 suggest that it formed at
granulite-facies conditions, prior to Alpine orogeny, most
likely during the Permian. At these HT conditions, the
protolith must have been largely dehydrated, hence a stage
of rehydration must be invoked to explain the development
of the mica-rich Alpine eclogite assemblage. A scenario
of HP hydration that triggered the dissolution of Grt1 and
the precipitation of Grt2 seems plausible, and it may
explain why substantial reaction overstepping (prior to
hydration) occurred (50–150 °C and 2–4 kbar, depending
on the prograde trajectory). The second Alpine rim (Grt3)
grew at lower P, estimated at 11± 2 kbar and 632± 50 °C.
The two solutions reported in Fig. 7 show similar P–T
ranges. This late stagemay be associatedwith phengite rims
and crossitic amphibole.

6.6. Importance of incorporating resorption in
thermodynamic models

Ourresults fromthe textural analysispredict resorptionofup
to 36 vol% of the total garnet produced occurring at
>11 kbar. During stage 3, themodel implies that 70 vol% of
Grt2was resorbed.Suchpartial resorptionhas a strongeffect
on the effectiveCBR used inmodeling. It is fair to askwhat a
classicalmodelwould predict, such as those discussed in the
introduction (Gaidies et al., 2008a;Konrad-Schmolke et al.,
2008; Moynihan & Pattison 2013; Vrijmoed & Hacker
2014),all ofwhichdoaccount for fractionationofgarnet, but
only for the amounts produced, not those resorbed. The
performance of such models has been tested using three
different model variants:
–
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Model T-1 (Fig. 10b): This model is computed used
Theriak and is based on fractionation (100% of garnet
produced) along a retrograde P–T path involving five
steps between 15.95 kbar (647 °C) and 11.01 kbar
(632 °C). These values were chosen based on thermo-
barometric results of this study (Fig. 10a) and on
petrological evidence (e.g., phengite inclusions; see
Sect. 6.3). The relict garnet core Grt1 was initially
fractionated from the CBR in order to generate a suitable
effective bulk composition for stage 2 (Fig. 10b). A
limitation of this test is that the P–T trajectory was
arbitrarily chosen.
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–
 Model MP-1 (Fig. 10c): To avoid this arbitrariness, the
strategy described by Moynihan & Pattison (2013)
was used. For the first composition of the zoning
profile the best conditions (P1–T1) are found, then
a second point is analyzed and finds P2–T2, etc. For
each step, the garnet model composition best matches
eschweizerbart_xxx
the next point of the zoning profile. In MP-1,
successive P–T optimizations are performed using
the garnet composition of the subsequent point of the
zoning profile (black squares in Fig. 10c); however,
the amount (volume) of garnet produced is not
considered.
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–
 ModelMP-2 (Fig. 10d): Same optimization asMP-1, but
in this case the successive P–T optimizations are done
using the garnet composition of the point on the zoning
profile that corresponds to the previously produced
volume of garnet (black squares in Fig. 10d).

Models MP-1 and MP-2 were computed using
GRTMOD with an option that prevents garnet resorption.
In both cases ∼11 vol% of garnet is produced in three
stages (labeled Grt2, Grt3 and Grt4 in Fig. 10c,d); this
amount corresponds to the total volume of Alpine garnet
found in the sample. Both models MP-1 and MP-2
retrieve the best P–T path for the given modeling
conditions. In model T-1, garnet is no longer predicted
stable after the second P–T step (for the local effective
bulk composition).
The importance of considering resorption in forward

thermodynamic models is evident when the results of the
three classical models (with fractionation only) are
comparedwith our referencemodel that includes resorption
and fractionation. The reference model with two growth
stages and partial resorption (GRTMOD in Fig. 10a) matches
theobservedzoningprofileaswell as thevolume fractionsof
eachgrowthzone.Allof theclassicalmodels (T-1,MP-1and
MP-2) fail to reproduce the observed zoning profile.
Furthermore, the fraction of Grt2 is always overestimated at
the first stage of growth (∼16 kbar). For Grt3, the models
MP-1 and MP-2 predict different P–T scenarios. MP-1
implies HP garnet because the model always tries to fit the
first Alpine rim composition that is not satisfactory for the
subsequent rims (Grt3 and Grt4 in Fig. 10c). In contrast,
model MP-2 does match the composition of Grt3 but the
corresponding volume fraction is seriously underestimated,
whereas Grt2 is overestimated. These discrepancies are
caused by the absence of resorption. Nevertheless, the P–T
conditions predicted by MP-2 are similar to those of the
reference model.
This simple example demonstrates how important it

is to consider the volume of garnet, not only the shape of
the compositional profile. By comparing predicted and
observed volume fractions in the sample, the amount of
growth and resorption can be estimated. For samples that
experienced no resorption, the models tested here
produce the same result (Fig. 6). Of course the com-
parison between samples and models is limited since the
amount of garnet remaining from each growth zone after
subsequent resorption is only a minimum of the garnet
produced at that stage. Therefore, the success of a model
covering all stages of growth and resorption needs to be
judged by comparing all of their compositions and modal
amounts.
7. Conclusions

In this study, we provide a strategy and a computer
program, GRTMOD, to model garnet growth through
successive stages by minimizing differences between
measured and modeled compositions as predicted for a
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given effective bulk composition. Gibbs free energy
minimization is used to obtain the model results. During
garnet growth, the previous growth zones can either be
fractionated from the bulk rock composition or be partially
resorbed.

The shape of the objective function may be complex,
sometimes showing two distinct local minima at different
P–T conditions (see Fig. 8). An automated strategy is
proposed, but the results strongly rely on the first P–T
optimization. The example with two solutions shows that
it is crucial to compare the measured and model
compositions of the coexisting phases as additional
constraints.

The models described in this study rely on a detailed
characterization of the compositions and texture of the
studied samples. Standardized X-ray maps are used to
constrain the average composition of each growth zone
and to calculate the phase proportions.

The GRTMOD program was successfully used to model
garnet growth conditions of a poly-metamorphic micas-
chist from the Sesia Zone (Western Alps). Garnet core
records Permian HT/LP metamorphic conditions, whereas
rims are formed at HP and MP during the Alpine
continental subduction.
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Appendix 1: Automated strategy description
A1.1 Optimization1 (P–T)

Optimization1 is carried out within a P–Twindow defined
between Tmin, Tmax, Pmin and Pmax (Fig. 4a, commands
TMIN, TMAX, PMIN and PMAX see Appendix 2). The
values of L0 and C0 are set at 1e

19 outside this P–Twindow
or if garnet is not stable. The minimum fraction of garnet
to be stable during this stage is fixed by the estimated
proportion in the present-day sample. During optimiza-
tion1, garnet resorption is not allowed to change, and the
volume fractions vi;j¼1:i�1 of garnet stabilized during the
previous stages are either entirely fractionated or partially
fractionated from the bulk-rock composition. For ad-
vanced stages, the complete fractionation may generate
extreme LEB compositions from which garnet become
unstable in the Gibbs free energy minimization (Konrad-
Schmolke et al., 2008). Four initial guesses are defined, as
illustrated in Fig. 4 (Gi

1;1, G
i
1;2, G

i
1;3, G

i
1;4). Additional
xxx



THDB Thermodynamic database
SAMP Sample name or additional commands for theriak

(*...)
SYST Order of oxides used to define the bulk (command

BULK)
BULK Composition of the bulk rock composition in

oxide weight percentage
NH2O Moles of H to be added to the bulk rock

composition
STOL Tolerance to select the result as a solution
RESC Tolerance used for the auto-refinement stage
SELS Method used to select the solution
SELP Method used to plot the solution
TOLX Tolerance on the variable X used by fminsearch
TOLF Tolerance on the function value used by

fminsearch
DISP Disp command of fminsearch
TMIN Tmin

TMAX Tmax

PMIN Pmin

PMAX Pmax
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initial guesses (Gi
1;r>4) can be easily defined. The number

of initial guesses defines how many minimizations are
done.
For stage S1 there are only two variables P1 and T1,

hence optimization2 is skipped. At the end of each
minimization a new solution is defined if (1) C0 is lower
than STOL (see Appendix 1) and (2) if no previous
solution exists with similar P and T (Fig. 4b). The P–T
couple is not stored as a new solution if pressure and
temperature differences with existing solutions are within
TDI1 and PDI1, respectively (see Appendix 2). In this case
the program considers that both minimizations converged
to the same minimum, and only the first is stored as a
solution. By contrast, for stage Si> 1, all solutions are
stored, and the P–T couple with the smaller value of C0 is
selected to be used as starting guess during optimization2
(for example Si1;2 becoming Gi

2;1 in Fig. 4b).

A1.2 Optimization2 (P–T–X)

Optimization2 is carried out for stage Si> 1 and the
following ones. It involves i�1 additional compositional
variables vi;j¼1:i�1 corresponding to the volume fractions
of previous garnet growth zones. Pressure and temperature
conditions of the best solution (Si1;best) from optimization1
are selected as initial guess (Gi

2;best). By contrast to
optimization1, compositional variables allowing garnet
resorption are introduced. The first initial guess is the
exact solution of optimization1, without any resorption or
with a fixed amount of resorption (Initial vi;j →maxðvjÞ).
The first minimization allows testing if resorption can help
to get a smaller value of C0 and therefore improve the
quality of the solution. The second guess assumes very
major resorption of previous garnet growth zones
(Initial vi;j →minðvjÞ) and the third one an intermediate
resorption (Initial vi;j ¼ minðvjÞ þ maxðvjÞ�minðvjÞ

2 ). At the
end of each minimization a new solution is defined if C0 is
lower than STOL. The refinement phase is applied to
all solutions.
TDI1 T steps first level
TDI2 T steps second level
PDI1 P steps first level
PDI2 P steps second level
A1.3 Auto-refinement phase

The auto-refinement phase aims to explore the P–T local
variability of the cost function in order to provide a relative
uncertainty and to investigate the sensitivity of the model
compositions. The C0 value of the cost function is used
because it intuitively represents the deviation between
model and measured compositions. New C0 values are
iteratively computed around the solution across height
directions (D1, D2, ...,D8 in Fig. 5). The P–T increments
dT and dP are set using values defined in TDI1 and PDI1
(Appendix 1).
For a given solution Si2;s with a value Coi2;s and a

tolerance TC0 (defined in RESC, see Appendix 1), across
the direction d, the next P–T point nþ 1 is calculated while
the following criterion is met

Codnþ1 < Coi2;s þ TCo: ðA1:1Þ
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The same procedure is repeated in all directions in order
to derive uncertainty bars (Fig. 5). The uncertainty on the
volume fraction of garnet stable at Pi,Ti is estimated as
the standard deviation of the volume fractions estimated
at each point across all directions.
A1.4 Go fast mode

The go fast mode allows beginning optimization2 from
a different starting point in order to check for alterna-
tive solutions. User defines the initial P–T couple and
the program skips optimization1. As described in
Appendix A1.2, three initial guesses with different
compositional variables vi;j¼1:i�1 (no resorption, strong
resorption and moderate resorption) are defined for
optimization2.
Appendix 2: GRTMOD main commands
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